919 research outputs found

    Disorder, Metal-Insulator crossover and Phase diagram in high-Tc cuprates

    Full text link
    We have studied the influence of disorder induced by electron irradiation on the normal state resistivities ρ(T)\rho(T) of optimally and underdoped YBa2CuOx single crystals, using pulsed magnetic fields up to 60T to completely restore the normal state. We evidence that point defect disorder induces low T upturns of rho(T) which saturate in some cases at low T in large applied fields as would be expected for a Kondo-like magnetic response. Moreover the magnitude of the upturns is related to the residual resistivity, that is to the concentration of defects and/or their nanoscale morphology. These upturns are found quantitatively identical to those reported in lower Tc cuprates, which establishes the importance of disorder in these supposedly pure compounds. We therefore propose a realistic phase diagram of the cuprates, including disorder, in which the superconducting state might reach the antiferromagnetic phase in the clean limit.Comment: version 2 with minor change

    Total suppression of superconductivity by high magnetic fields in YBa2 Cu3O6.6

    Full text link
    We have studied in fields up to 60T the variation of the transverse magnetoresistance (MR) of underdoped YBCO6.6 crystals either pure or with Tc reduced down to 3.5K by electron irradiation. We evidence that the normal state MR is restored above a threshold field H'c(T), which is found to vanish at T'c>>Tc. In the pure YBCO6.6 sample a 50 Tesla field is already required to completely suppress the superconducting fluctuations at Tc. While disorder does not depress the pseudogap temperature, it reduces drastically the phase coherence established at Tc and weakly H'c(0), T'c and the onset Tnu of the Nernst signal which are more characteristic of the 2D local pairing.Comment: 4 pages, 4 figure

    Competing types of quantum oscillations in the 2D organic conductor (BEDT-TTF)8Hg4Cl12(C6H5Cl)2

    Full text link
    Interlayer magnetoconductance of the quasi-two dimensional organic metal (BEDT-TTF)8Hg4Cl12(C6H5Cl)2 has been investigated in pulsed magnetic fields extending up to 36 T and in the temperature range from 1.6 to 15 K. A complex oscillatory spectrum, built on linear combinations of three basic frequencies only is observed. These basic frequencies arise from the compensated closed hole and electron orbits and from the two orbits located in between. The field and temperature dependencies of the amplitude of the various oscillation series are studied within the framework of the coupled orbits model of Falicov and Stachowiak. This analysis reveals that these series result from the contribution of either conventional Shubnikov-de Haas effect (SdH) or quantum interference (QI), both of them being induced by magnetic breakthrough. Nevertheless, discrepancies between experimental and calculated parameters indicate that these phenomena alone cannot account for all of the data. Due to its low effective mass, one of the QI oscillation series - which corresponds to the whole first Brillouin zone area - is clearly observed up to 13 K.Comment: 8 pages, 8 figures. To be published in Phys. Rev.

    Fermi-surface reconstruction and two-carrier model for the Hall effect in YBa2Cu4O8

    Full text link
    Pulsed field measurements of the Hall resistivity and magnetoresistance of underdoped YBa2Cu4O8 are analyzed self-consistently using a simple model based on coexisting electron and hole carriers. The resultant mobilities and Hall numbers are found to vary markedly with temperature. The conductivity of the hole carriers drops by one order of magnitude below 30 K, explaining the absence of quantum oscillations from these particular pockets. Meanwhile the Hall coefficient of the electron carriers becomes strongly negative below 50 K. The overall quality of the fits not only provides strong evidence for Fermi-surface reconstruction in Y-based cuprates, it also strongly constrains the type of reconstruction that might be occurring.Comment: 5 pages, 4 figures, updated after publication in Physical Review B (Rapid Communication

    Phenomenology of the normal state in-plane transport properties of high-TcT_c cuprates

    Full text link
    In this article, I review progress towards an understanding of the normal state (in-plane) transport properties of high-TcT_c cuprates in the light of recent developments in both spectroscopic and transport measurement techniques. Against a backdrop of mounting evidence for anisotropic single-particle lifetimes in cuprate superconductors, new results have emerged that advocate similar momentum dependence in the transport decay rate Γ\Gamma({\bf k}). In addition, enhancement of the energy scale (up to the bare bandwidth) over which spectroscopic information on the quasiparticle response can be obtained has led to the discovery of new, unforeseen features that surprisingly, may have a significant bearing on the transport properties at the dc limit. With these two key developments in mind, I consider here whether all the ingredients necessary for a complete phenomenological description of the anomalous normal state transport properties of high-TcT_c cuprates are now in place.Comment: 31 pages, 10 figure

    Physics of the Merging Clusters Cygnus A, A3667, and A2065

    Full text link
    We present ASCA gas temperature maps of the nearby merging galaxy clusters Cygnus A, A3667, and A2065. Cygnus A appears to have a particularly simple merger geometry that allows an estimate of the subcluster collision velocity from the observed temperature variations. We estimate it to be ~2000 km/s. Interestingly, this is similar to the free-fall velocity that the two Cygnus A subclusters should have achieved at the observed separation, suggesting that merger has been effective in dissipating the kinetic energy of gas halos into thermal energy, without channeling its major fraction elsewhere (e.g., into turbulence). In A3667, we may be observing a spatial lag between the shock front seen in the X-ray image and the corresponding rise of the electron temperature. A lag of the order of hundreds of kiloparsecs is possible due to the combination of thermal conduction and a finite electron-ion equilibration time. Forthcoming better spatial resolution data will allow a direct measurement of these phenomena using such lags. A2065 has gas density peaks coincident with two central galaxies. A merger with the collision velocity estimated from the temperature map should have swept away such peaks if the subcluster total mass distributions had flat cores in the centers. The fact that the peaks have survived (or quickly reemerged) suggests that the gravitational potential also is strongly peaked. Finally, the observed specific entropy variations in A3667 and Cygnus A indicate that energy injection from a single major merger may be of the order of the full thermal energy of the gas. We hope that these order of magnitude estimates will encourage further work on hydrodynamic simulations, as well as more quantitative representation of the simulation results.Comment: Corrected the Cyg-A figure (errors shown were 1-sigma not 90%); text unchanged. ApJ in press. Latex, 5 pages, 3 figures (2 color), uses emulateapj.st

    Transport in Ultraclean YBa2_2Cu3_3O7_7: neither Unitary nor Born Impurity Scattering

    Full text link
    The thermal conductivity of ultraclean YBa2_2Cu3_3O7_7 was measured at very low temperature in magnetic fields up to 13 T. The temperature and field dependence of the electronic heat conductivity show that two widespread assumptions of transport theory applied to unconventional superconductors fail for clean cuprates: impurity scattering cannot be treated in the usual unitary limit (nor indeed in the Born limit), and scattering of quasiparticles off vortices cannot be neglected. Our study also sheds light on the long-standing puzzle of a sudden onset of a "plateau" in the thermal conductivity of Bi-2212 versus field.Comment: 5 pages, 3 figures, submitted to Physical Review Letter

    Fermi Surface of the Electron-doped Cuprate Superconductor Nd_{2-x}Ce_xCuO_{4} Probed by High-Field Magnetotransport

    Full text link
    We report on the study of the Fermi surface of the electron-doped cuprate superconductor Nd2−x_{2-x}Cex_xCuO4_{4} by measuring the interlayer magnetoresistance as a function of the strength and orientation of the applied magnetic field. We performed experiments in both steady and pulsed magnetic fields on high-quality single crystals with Ce concentrations of x=0.13x=0.13 to 0.17. In the overdoped regime of x>0.15x > 0.15 we found both semiclassical angle-dependent magnetoresistance oscillations (AMRO) and Shubnikov-de Haas (SdH) oscillations. The combined AMRO and SdH data clearly show that the appearance of fast SdH oscillations in strongly overdoped samples is caused by magnetic breakdown. This observation provides clear evidence for a reconstructed multiply-connected Fermi surface up to the very end of the overdoped regime at x≃0.17x\simeq 0.17. The strength of the superlattice potential responsible for the reconstructed Fermi surface is found to decrease with increasing doping level and likely vanishes at the same carrier concentration as superconductivity, suggesting a close relation between translational symmetry breaking and superconducting pairing. A detailed analysis of the high-resolution SdH data allowed us to determine the effective cyclotron mass and Dingle temperature, as well as to estimate the magnetic breakdown field in the overdoped regime.Comment: 23 pages, 8 figure

    Hall, Seebeck, and Nernst Coefficients of Underdoped HgBa2CuO4+d: Fermi-Surface Reconstruction in an Archetypal Cuprate Superconductor

    Full text link
    Charge density-wave order has been observed in cuprate superconductors whose crystal structure breaks the square symmetry of the CuO2 planes, such as orthorhombic YBa2Cu3Oy (YBCO), but not so far in cuprates that preserve that symmetry, such as tetragonal HgBa2CuO4+d (Hg1201). We have measured the Hall (R_H), Seebeck (S), and Nernst coefficients of underdoped Hg1201 in magnetic fields large enough to suppress superconductivity. The high-field R_H(T) and S(T) are found to drop with decreasing temperature and become negative, as also observed in YBCO at comparable doping. In YBCO, the negative R_H and S are signatures of a small electron pocket caused by Fermi-surface reconstruction, attributed to charge density-wave modulations observed in the same range of doping and temperature. We deduce that a similar Fermi-surface reconstruction takes place in Hg1201, evidence that density-wave order exists in this material. A striking similarity is also found in the normal-state Nernst coefficient, further supporting this interpretation. Given the model nature of Hg1201, Fermi-surface reconstruction appears to be common to all hole-doped cuprates, suggesting that density-wave order is a fundamental property of these materials
    • 

    corecore