80 research outputs found
Aquaporin-4 and brain edema.
Aquaporin-4 (AQP4) is a water-channel protein expressed strongly in the brain, predominantly in astrocyte foot processes at the borders between the brain parenchyma and major fluid compartments, including cerebrospinal fluid (CSF) and blood. This distribution suggests that AQP4 controls water fluxes into and out of the brain parenchyma. Experiments using AQP4-null mice provide strong evidence for AQP4 involvement in cerebral water balance. AQP4-null mice are protected from cellular (cytotoxic) brain edema produced by water intoxication, brain ischemia, or meningitis. However, AQP4 deletion aggravates vasogenic (fluid leak) brain edema produced by tumor, cortical freeze, intraparenchymal fluid infusion, or brain abscess. In cytotoxic edema, AQP4 deletion slows the rate of water entry into brain, whereas in vasogenic edema, AQP4 deletion reduces the rate of water outflow from brain parenchyma. AQP4 deletion also worsens obstructive hydrocephalus. Recently, AQP4 was also found to play a major role in processes unrelated to brain edema, including astrocyte migration and neuronal excitability. These findings suggest that modulation of AQP4 expression or function may be beneficial in several cerebral disorders, including hyponatremic brain edema, hydrocephalus, stroke, tumor, infection, epilepsy, and traumatic brain injury
Major combined electrolyte deficiency during therapy with low-dose Cisplatin, 5-Fluorouracil and Interferon alpha: report on several cases and review of the literature [ISRCTN62866759]
BACKGROUND: Low-dose Cisplatin and Interferon alpha treatment of solid tumors rarely has been associated with severe hypocalcaemia. To the authors knowledge the phenomenon has not been reported previously in patients with pancreatic carcinoma. CASE PRESENTATION: A patient with resected adenocarcinoma of the pancreas was treated with adjuvant radio-chemo-immunotherapy using a combination of low-dose Cisplatin, 5-Fluorouracil and Interferon alpha together with external beam radiation. Severe hypocalcaemia without signs of acute renal failure or electrolyte disturbance occurred within 2 days at the 4th week of treatment and required intensive care treatment. CONCLUSION: Combination of biological and cytotoxic therapies may increase the incidence of severe hypocalcaemia in pancreatic cancer. Oncologists should remain attentive of this problem as more highly active regimes become available
Intravenous fluid restriction after major abdominal surgery: a randomized blinded clinical trial
Background: Intravenous (IV) fluid administration is an essential part of postoperative care. Some studies suggest that a restricted post-operative fluid regime reduces complications and postoperative hospital stay after surgery. We investigated the effects of postoperative fluid restriction in surgical patients undergoing major abdominal surgery. Methods: In a blinded randomized trial, 62 patients (ASA I-III) undergoing elective major abdominal surgical procedures in a university hospital were allocated either to a restricted (1.5 L/24 h) or a standard postoperative IV fluid regime (2.5 L/24 h). Primary endpoint was length of postoperative hospital stay (PHS). Secondary endpoints included postoperative complications and time to restore gastric functions. Results: After a 1-year inclusion period, an unplanned interim analysis was made because of many protocol violations due to patient deterioration. In the group with the restricted regime we found a significantly increased PHS (12.3 vs. 8.3 days; p = 0.049) and significantly more major complications: 12 in 30 (40%) vs. 5 in 32 (16%) patients (Absolute Risk Increase: 0.24 [95%CI: 0.03 to 0.46], i.e. a number needed to harm of 4 [95%CI: 2-33]). Therefore, the trial was stopped prematurely. Intention to treat analysis showed no differences in time to restore gastric functions between the groups. Conclusion: Restricted postoperative IV fluid management, as performed in this trial, in patients undergoing major abdominal surgery appears harmful as it is accompanied by an increased risk of major postoperative complications and a prolonged postoperative hospital stay
Regulation of peripheral blood flow in Complex Regional Pain Syndrome: clinical implication for symptomatic relief and pain management
Background. During the chronic stage of Complex Regional Pain Syndrome (CRPS), impaired microcirculation is related to increased vasoconstriction, tissue hypoxia, and metabolic tissue acidosis in the affected limb. Several mechanisms may be responsible for the ischemia and pain in chronic cold CPRS. Discussion. The diminished blood flow may be caused by either sympathetic dysfunction, hypersensitivity to circulating catecholamines, or endothelial dysfunction. The pain may be of neuropathic, inflammatory, nociceptive, or functional nature, or of mixed origin. Summary. The origin of the pain should be the basis of the symptomatic therapy. Since the difference in temperature between both hands fluctuates over time in cold CRPS, when in doubt, the clinician should prioritize the patient's report of a persistent cold extremity over clinical tests that show no difference. Future research should focus on developing easily applied methods for clinical use to differentiate between central and peripheral blood flow regulation disorders in individual patients
- …