6 research outputs found

    Local Lagrangian Approximations for the Evolution of the Density Distribution Function in Large-Scale Structure

    Get PDF
    We examine local Lagrangian approximations for the gravitational evolution of the density distribution function. In these approximations, the final density at a Lagrangian point q at a time t is taken to be a function only of t and of the initial density at the same Lagrangian point. A general expression is given for the evolved density distribution function for such approximations, and we show that the vertex generating function for a local Lagrangian mapping applied to an initially Gaussian density field bears a simple relation to the mapping itself. Using this result, we design a local Lagrangian mapping which reproduces nearly exactly the hierarchical amplitudes given by perturbation theory for gravitational evolution. When extended to smoothed density fields and applied to Gaussian initial conditions, this mapping produces a final density distribution function in excellent agreement with full numerical simulations of gravitational clustering. We also examine the application of these local Lagrangian approximations to non-Gaussian initial conditions.Comment: LaTeX, 22 pages, and 11 postscript figure

    Skewness of the Large-Scale Velocity Divergence from Non-Gaussian Initial Conditions

    Get PDF
    We compute the skewness t3t_3 and the corresponding hierarchical amplitude T3T_3 of the divergence of the velocity field for arbitrary non-Gaussian initial conditions. We find that T3T_3 qualitatively resembles the corresponding hierarchical amplitude for the density field, S3S_3, in that it contains a term proportional to the initial skewness, which decays inversely as the linear growth factor, plus a constant term which differs from the corresponding Gaussian term by a complex function of the initial three- and four- point functions. We extend the results for S3S_3 and T3T_3 with non-Gaussian initial conditions to evolved fields smoothed with a spherical tophat window function. We show that certain linear combinations, namely S3+12T3S_3 + {1 \over 2} T_3, S3+T3S_3 + T_3, and s3+t3s_3 + t_3, lead to expressions which are much simpler, for non-Gaussian initial conditions, than S3S_3 and T3T_3 (or s3s_3 and t3t_3) considered separately.Comment: 13 pages, latex, no figure

    The Topology of Large Scale Structure in the 1.2 Jy IRAS Redshift Survey

    Get PDF
    We measure the topology (genus) of isodensity contour surfaces in volume limited subsets of the 1.2 Jy IRAS redshift survey, for smoothing scales \lambda=4\hmpc, 7\hmpc, and 12\hmpc. At 12\hmpc, the observed genus curve has a symmetric form similar to that predicted for a Gaussian random field. At the shorter smoothing lengths, the observed genus curve shows a modest shift in the direction of an isolated cluster or ``meatball'' topology. We use mock catalogs drawn from cosmological N-body simulations to investigate the systematic biases that affect topology measurements in samples of this size and to determine the full covariance matrix of the expected random errors. We incorporate the error correlations into our evaluations of theoretical models, obtaining both frequentist assessments of absolute goodness-of-fit and Bayesian assessments of models' relative likelihoods. We compare the observed topology of the 1.2 Jy survey to the predictions of dynamically evolved, unbiased, gravitational instability models that have Gaussian initial conditions. The model with an n=1n=-1, power-law initial power spectrum achieves the best overall agreement with the data, though models with a low-density cold dark matter power spectrum and an n=0n=0 power-law spectrum are also consistent. The observed topology is inconsistent with an initially Gaussian model that has n=2n=-2, and it is strongly inconsistent with a Voronoi foam model, which has a non-Gaussian, bubble topology.Comment: ApJ submitted, 39 pages, LaTeX(aasms4), 12 figures, 1 Tabl
    corecore