13 research outputs found

    Hypomagnesemia, Hypocalcemia, and Tubulointerstitial Nephropathy Caused by Claudin-16 Autoantibodies.

    No full text
    Chronic hypomagnesemia is commonly due to diarrhea, alcoholism, and drugs. More rarely, it is caused by genetic defects in the effectors of renal magnesium reabsorption. In an adult patient with acquired severe hypomagnesemia, hypocalcemia, tubulointerstitial nephropathy, and rapidly progressing kidney injury, similarities between the patient's presentation and features of genetic disorders of renal magnesium transport prompted us to investigate whether the patient had an acquired autoimmune cause of renal magnesium wasting. To determine if the patient's condition might be explained by autoantibodies directed against claudin-16 or claudin-19, transmembrane paracellular proteins involved in renal magnesium absorption, we conducted experiments with claudin knockout mice and transfected mouse kidney cells expressing human claudin-16 or claudin-19. We also examined effects on renal magnesium handling in rats given intravenous injections of IgG purified from sera from the patient or controls. Experiments with the knockout mice and in vitro transfected cells demonstrated that hypomagnesemia in the patient was causally linked to autoantibodies directed against claudin-16, which controls paracellular magnesium reabsorption in the thick ascending limb of Henle's loop. Intravenous injection of IgG purified from the patient's serum induced a marked urinary waste of magnesium in rats. Immunosuppressive treatment combining plasma exchange and rituximab was associated with improvement in the patient's GFR, but hypomagnesemia persisted. The patient was subsequently diagnosed with a renal carcinoma that expressed a high level of claudin-16 mRNA. Pathogenic claudin-16 autoantibodies represent a novel autoimmune cause of specific renal tubular transport disturbances and tubulointerstitial nephropathy. Screening for autoantibodies targeting claudin-16, and potentially other magnesium transporters or channels in the kidney, may be warranted in patients with acquired unexplained hypomagnesemia

    Safety of Inulin and Sinistrin: Combining Several Sources for Pharmacovigilance Purposes

    No full text
    International audienceIntroduction: Inulin and its analog sinistrin are fructose polymers used in the food and pharmaceutical industries. In 2018, The French National Agency for the Safety of Medicines and Health Products (ANSM) decided to withdraw products containing sinistrin and inulin due to several reports of serious hypersensitivity reactions, including a fatal outcome.Objective: To assess the safety of inulin and sinistrin use in France.Methods: We searched multiple sources to identify adverse reactions (ARs) to inulin or sinistrin: first, classical pharmacovigilance databases including the French Pharmacovigilance (FPVD) and the WHO Database (VigiBase); second, data from a clinical trial, MultiGFR; third, data regarding current use in an hospital. All potential ARs to inulin or sinistrin were analyzed with a focus on hypersensitivity reactions and relationships to batches of sinistrin.Results: From 1991 to 2018, 134 ARs to inulin or sinistrin were registered in the FPVD or VigiBase. Sixty-three cases (47%) were classified as serious, and 129 cases (96%) were hypersensitivity reactions. We found an association between a batch of sinistrin and the occurrence of hypersensitivity reactions. During the MultiGFR clinical trial, 7 patients (7/163 participants) had an Adverse reaction; of these, 4 were hypersensitivity reactions including one case of grade 4 anaphylactic shock. In the hospital, no ARs were observed. In the literature, ARs to inulin and sinistrin are very rarely reported and mostly benign.Conclusion: Most ARs to inulin and sinistrin are hypersensitivity reactions that appear to be associated with sinistrin batches

    Possible role for rare TRPM7 variants in patients with hypomagnesaemia with secondary hypocalcaemia.

    No full text
    BACKGROUND: Hypomagnesaemia with secondary hypocal-caemia (HSH) is a rare autosomal recessive disorder caused by pathogenic variants in TRPM6, encoding the channel-kinase transient receptor potential melastatin type 6. Patients have very low serum magnesium (Mg2+) levels and suffer from muscle cramps and seizures. Despite genetic testing, a subgroup of HSH patients remains without a diagnosis. METHODS: In this study, two families with an HSH phenotype but negative for TRPM6 pathogenic variants were subjected to whole exome sequencing. Using a complementary combination of biochemical and functional analyses in overexpression systems and patient-derived fibroblasts, the effect of the TRPM7-identified variants on Mg2+ transport was examined. RESULTS: For the first time, variants in TRPM7 were identified in two families as a potential cause for hereditary HSH. Patients suffer from seizures and muscle cramps due to magnesium deficiency and episodes of hypocalcaemia. In the first family, a splice site variant caused the incorporation of intron 1 sequences into the TRPM7 messenger RNA and generated a premature stop codon. As a consequence, patient-derived fibroblasts exhibit decreased cell growth. In the second family, a heterozygous missense variant in the pore domain resulted in decreased TRPM7 channel activity. CONCLUSIONS: We establish TRPM7 as a prime candidate gene for autosomal dominant hypomagnesaemia and secondary hypocalcaemia. Screening of unresolved patients with hypocalcaemia and secondary hypocalcaemia may further establish TRPM7 pathogenic variants as a novel Mendelian disorder
    corecore