2 research outputs found

    Male mice and cows perceive human emotional chemosignals: a preliminary study

    No full text
    International audienceOlfactory cues of individuals of the same species or from different species may induce changes in behaviors and physiological reactions in mammals. However, there are few studies on the influence of human odor on animal behavior and welfare, especially those of rodents and farm animals. The present study aimed to investigate whether the odor of a stressed human (in sweat) would modify the behavior of mice and cows. We hypothesized that laboratory and farm animals can perceive human emotions though olfactory cues and that human emotional chemosignals can modify their behavioral reactions and welfare. Two odors of human axillary sweat were collected from engineering students (n = 25, 14 females and 11 males; 21.1 ± 0.7 years old, range: 19-23 years old): a "stress" odor collected after an exam and a "non-stress" odor collected after a standard class. Two experiments were then conducted to test the discrimination of these two odors by male mice (n = 20) under standard conditions and by cows (n = 10) under farm conditions. During the experiments, the behavioral responses of the animals to both odors (through a dispenser for the mice and a bucket for the cows) were observed. The mice produced significantly (p = 0.004) more fecal pellets with the stress odor dispenser than with the non-stress-odor dispenser. The cows spent significantly (p = 0.04) more time smelling the non-stress-odor bucket than control. For both species, the other behaviors observed did not differ significantly between the odors. Mice and cows seemed to perceive and react to stressful human chemosignals. Mice showed physiological reactions that indicated stress in response to the stress odor of humans, while cows showed preference reactions in response to the non-stress odor of humans. This preliminary study showed that laboratory and farm animals, such as male mice and cows, seemed to discriminate certain odors emitted by humans that were likely related to different emotions. Animals may recognize stressful human chemosignals, associate these signals with negative husbandry practices or human-animal relationships, and consequently modify their behavior

    Positive association of angiotensin II receptor blockers, not angiotensin-converting enzyme inhibitors, with an increased vulnerability to SARS-CoV-2 infection in patients hospitalized for suspected COVID-19 pneumonia.

    No full text
    BackgroundAngiotensin-converting enzyme 2 is the receptor that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uses for entry into lung cells. Because ACE-2 may be modulated by angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin II receptor blockers (ARBs), there is concern that patients treated with ACEIs and ARBs are at higher risk of coronavirus disease 2019 (COVID-19) pneumonia.AimThis study sought to analyze the association of COVID-19 pneumonia with previous treatment with ACEIs and ARBs.Materials and methodsWe retrospectively reviewed 684 consecutive patients hospitalized for suspected COVID-19 pneumonia and tested by polymerase chain reaction assay. Patients were split into two groups, according to whether (group 1, n = 484) or not (group 2, n = 250) COVID-19 was confirmed. Multivariable adjusted comparisons included a propensity score analysis.ResultsThe mean age was 63.6 ± 18.7 years, and 302 patients (44%) were female. Hypertension was present in 42.6% and 38.4% of patients in groups 1 and 2, respectively (P = 0.28). Treatment with ARBs was more frequent in group 1 than group 2 (20.7% vs. 12.0%, respectively; odds ratio [OR] 1.92, 95% confidence interval [CI] 1.23-2.98; P = 0.004). No difference was found for treatment with ACEIs (12.7% vs. 15.7%, respectively; OR 0.81, 95% CI 0.52-1.26; P = 0.35). Propensity score-matched multivariable logistic regression confirmed a significant association between COVID-19 and previous treatment with ARBs (adjusted OR 2.36, 95% CI 1.38-4.04; P = 0.002). Significant interaction between ARBs and ACEIs for the risk of COVID-19 was observed in patients aged > 60 years, women, and hypertensive patients.ConclusionsThis study suggests that ACEIs and ARBs are not similarly associated with COVID-19. In this retrospective series, patients with COVID-19 pneumonia more frequently had previous treatment with ARBs compared with patients without COVID-19
    corecore