6 research outputs found

    Adjustment of superconductivity and ferromagnetism in the few-layered ferromagnet–superconductor nanostructures

    No full text
    The phase diagrams of the few-layered nanosystems consisting of dirty superconducting (S) and ferromagnetic (F) metals are investigated within the framework of the modern theory of the proximity effect taking into account the boundary conditions. The F/S tetralayer and pentalayer are shown to have considerably richer physics than the F/S bi- and trilayer (due to the interplay between the 0 and π phase superconductivity and the 0 and π phase magnetism and nonequivalence of layers) and even the F/S superlattices. It is proven that these systems can have different critical temperatures and fields for different S layers. This predicted decoupled superconductivity is found to manifest itself in its most striking way for F/S tetralayer. It is shown that F/S/F/S tetralayer is the most perspective candidate for use in superconducting spin nanoelectronics

    Theoretical description of the ferromagnetic π\pi -junctions near the critical temperature

    Full text link
    The theory of ferromagnetic Pi-junction near the critical temperature is presented. It is demonstrated that in the dirty limit the modified Usadel equation adequately describes the proximity effect in ferromagnets. To provide the description of an experimentally relevant situation, oscillations of the Josephson critical current are calculated as a function of ferromagnetic layer thickness for different transparencies of the superconductor-ferromagnet interfaces.Comment: 12 pages, 4 figures, submitted to Phys. Rev.

    Thermodynamic properties of ferromagnetic/superconductor/ferromagnetic nanostructures

    Full text link
    The theoretical description of the thermodynamic properties of ferromagnetic/superconductor/ferromagnetic (F/S/F) systems of nanoscopic scale is proposed. Their superconducting characteristics strongly depend on the mutual orientation of the ferromagnetic layers. In addition, depending on the transparency of S/F interfaces, the superconducting critical temperature can exhibit four different types of dependences on the thickness of the F-layer. The obtained results permit to give some practical recommendations for the spin-valve effect experimental observation. In this spin-valve sandwich, we also expect a spontaneous transition from parallel to anti-parallel ferromagnetic moment orientation, due to the gain in the superconducting condensation energy.Comment: 20 pages, 5 figures, submitted to PR

    Layered ferromagnet-superconductor structures: the π\pi state and proximity effects

    Full text link
    We investigate clean mutilayered structures of the SFS and SFSFS type, (where the S layer is intrinsically superconducting and the F layer is ferromagnetic) through numerical solution of the self-consistent Bogoliubov-de Gennes equations for these systems. We obtain results for the pair amplitude, the local density of states, and the local magnetic moment. We find that as a function of the thickness dFd_F of the magnetic layers separating adjacent superconductors, the ground state energy varies periodically between two stable states. The first state is an ordinary "0-state", in which the order parameter has a phase difference of zero between consecutive S layers, and the second is a "π\pi-state", where the sign alternates, corresponding to a phase difference of π\pi between adjacent S layers. This behavior can be understood from simple arguments. The density of states and the local magnetic moment reflect also this periodicity.Comment: 12 pages, 10 Figure

    Controllаble Josephson 0–π Junction Based on a Four-Layer Ferromagnetic–Superconductor System (FSFS)

    No full text
    © 2020, Pleiades Publishing, Ltd. Abstract: A system containing four alternating ferromagnetic and superconducting layers (F1/S1/F2/S2) is examined in this work. The state of this contact may be controlled by an external magnetic field. The critical temperature of the superconducting transition and the Josephson current are calculated theoretically at different thicknesses and collinear orientations of magnetizations of ferromagnetic layers. It is demonstrated that this F1/S1/F2/S2 system may serve as a controllable Josephson 0–π contact or an inverse spin valve

    Competition between BCS and FFLO States in Magnetic Superconductors in a Cryptoferromagnetic Phase

    No full text
    © 2020, Pleiades Publishing, Inc. The possibility of appearance of inhomogeneous superconducting Fulde—Ferrell—Larkin—Ovchinnikov (FFLO) states in magnetic superconductors in a cryptoferromagnetic phase with helical magnetic ordering has been analyzed. The dependence of the critical temperature on the angle between the wave vectors of the spatial modulation of the FFLO state and helical magnetic structure has been calculated within the proposed model. It has been shown that their mutually perpendicular orientation corresponds to the most energetically favorable state. The numerical calculations have also shown the existence of a tricritical point on a line separating the Bardeen—Cooper—Schrieffer and FFLO phases on the phase diagram of states. Furthermore, FFLO states can appear in a magnetic superconductor even at fairly strong exchange fields because of the difference between the effective masses of conduction electrons in different spin subbands and the anisotropy of the Fermi surface
    corecore