2 research outputs found

    Aerodynamic and Aeroacoustic Performance of Small UAV Propellers in Static Conditions

    Get PDF
    The proliferation of small multi-rotor UAVs in commercial, recreational, and surveillance spheres has garnered significant interest in the noise produced by these vehicles. The current research aims to study the relationship between the aerodynamic performance and acoustic characteristics of small-scale UAV propellers. Three commercially available propellers for the DJI Phantom 2/3 UAV were selected for preliminary development and validation of an aeroacoustic experimental test setup and associated data reduction methods. Propeller thrust, torque, and power measurements were recorded at static conditions. Upon successful validation of the test bench, acoustic measurements were taken at the propeller disk’s upstream and in-plane locations. The power spectral density of these acoustic signals was estimated using the modified periodogram (Welch’s) method to identify frequency content and calculate sound pressure levels (SPLs) at each of the observation locations. Additionally, time-frequency analysis verified the periodogram results and identified possible sources of transient noise at static thrust. These methods found the nonrotor noise to be a major contributor to the SPL at higher frequencies and the propeller noise dominating the SPL spectra at the lower frequencies. Experimental thrust, torque, power, and sound pressure level (SPL) data were then compared for each propeller to identify relationships between aerodynamic performance and acoustic characteristics with variations in propeller geometry and blade loading

    Static Testing of Propulsion Elements for Small Multirotor Unmanned Aerial Vehicles

    Get PDF
    The growing use of small multirotor aircraft has increased the interest in having better performance results especially with the propulsion system. The size of the propellers used on these aircraft operate at low Reynolds numbers that are typically less than 200,000. Static performance testing of ten propeller pairs (tractor and pusher) were completed and is the beginning of a systematic test of propellers used on multirotor systems. The propellers chosen for this initial set of tests were selected from four popular quadrotors. Besides testing the propellers provided with the aircraft, propellers that are sold as replacements from third-party companies were also tested. Both the 3D Robotics Solo and DJI Phantom 3 had multiple propellers tested and a method to compare the resulting endurance is discussed
    corecore