7 research outputs found

    The available energy of trapped electrons:a nonlinear measure for turbulent transport

    Get PDF
    A collisionless plasma possesses a certain amount of 'available energy', which is that part of the thermal energy that can be converted into kinetic energy of plasma motion and electromagnetic fluctuations. In this paper we present a calculation of the available energy carried by trapped electrons in a slender non-omnigenous flux tube of plasma. This quantity is compared with gyrokinetic simulations of the nonlinear saturated radial energy flux resulting from turbulence driven by collisionless trapped-electron modes in various stellarators and a tokamak. The numerical calculation of available energy is fast and shows a strong correlation with the turbulent energy fluxes found in the gyrokinetic simulations. Indeed, the energy flux is found to be proportional to the available energy to the power of approximately, which is what one would expect from a simple argument. We furthermore investigate how available energy is distributed across different bounce wells, and it is found that deeply trapped electrons typically contribute most to the available energy. Finally, we investigate the dependence of available energy on gradient strength, and we find important differences between weakly and strongly driven regimes for stellarators and tokamaks.</p

    The available energy of trapped electrons:a nonlinear measure for turbulent transport

    Get PDF
    A collisionless plasma possesses a certain amount of 'available energy', which is that part of the thermal energy that can be converted into kinetic energy of plasma motion and electromagnetic fluctuations. In this paper we present a calculation of the available energy carried by trapped electrons in a slender non-omnigenous flux tube of plasma. This quantity is compared with gyrokinetic simulations of the nonlinear saturated radial energy flux resulting from turbulence driven by collisionless trapped-electron modes in various stellarators and a tokamak. The numerical calculation of available energy is fast and shows a strong correlation with the turbulent energy fluxes found in the gyrokinetic simulations. Indeed, the energy flux is found to be proportional to the available energy to the power of approximately, which is what one would expect from a simple argument. We furthermore investigate how available energy is distributed across different bounce wells, and it is found that deeply trapped electrons typically contribute most to the available energy. Finally, we investigate the dependence of available energy on gradient strength, and we find important differences between weakly and strongly driven regimes for stellarators and tokamaks.</p

    Enhanced Transport at High Plasma Pressure and Subthreshold Kinetic Ballooning Modes in Wendelstein 7-X

    Get PDF
    High-performance fusion plasmas, requiring high pressure β, are not well understood in stellarator-type experiments. Here, the effect of β on ion-temperature-gradient-driven (ITG) turbulence is studied in Wendelstein 7-X (W7-X), showing that subdominant kinetic ballooning modes (KBMs) are unstable well below the ideal MHD threshold and get strongly excited in the turbulence. By zonal-flow erosion, these subthreshold KBMs (stKBMs) affect ITG saturation and enable higher heat fluxes. Controlling stKBMs will be essential to allow W7-X and future stellarators to achieve maximum performance.</p

    Enhanced Transport at High Plasma Pressure and Subthreshold Kinetic Ballooning Modes in Wendelstein 7-X

    Get PDF
    High-performance fusion plasmas, requiring high pressure β, are not well understood in stellarator-type experiments. Here, the effect of β on ion-temperature-gradient-driven (ITG) turbulence is studied in Wendelstein 7-X (W7-X), showing that subdominant kinetic ballooning modes (KBMs) are unstable well below the ideal MHD threshold and get strongly excited in the turbulence. By zonal-flow erosion, these subthreshold KBMs (stKBMs) affect ITG saturation and enable higher heat fluxes. Controlling stKBMs will be essential to allow W7-X and future stellarators to achieve maximum performance.</p

    Turbulence Mechanisms of Enhanced Performance Stellarator Plasmas

    No full text
    We theoretically assess two mechanisms thought to be responsible for the enhanced performance observed in plasma discharges of the Wendelstein 7-X stellarator experiment fueled by pellet injection. The effects of the ambipolar radial electric field and the electron density peaking on the turbulent ion heat transport are separately evaluated using large-scale gyrokinetic simulations. The essential role of the stellarator magnetic geometry is demonstrated, by comparison with a tokamak

    Turbulence Mechanisms of Enhanced Performance Stellarator Plasmas

    No full text
    We theoretically assess two mechanisms thought to be responsible for the enhanced performance observed in plasma discharges of the Wendelstein 7-X stellarator experiment fueled by pellet injection. The effects of the ambipolar radial electric field and the electron density peaking on the turbulent ion heat transport are separately evaluated using large-scale gyrokinetic simulations. The essential role of the stellarator magnetic geometry is demonstrated, by comparison with a tokamak. </p

    High-performance plasmas after pellet injections in Wendelstein 7-X

    No full text
    A significant improvement of plasma parameters in the optimized stellarator W7-X is found after injections of frozen hydrogen pellets. The ion temperature in the post-pellet phase exceeds 3 keV with 5 MW of electron heating and the global energy confinement time surpasses the empirical ISS04-scaling. The plasma parameters realized in such experiments are significantly above those in comparable gas-fuelled discharges. In this paper, we present details of these pellet experiments and discuss the main plasma properties during the enhanced confinement phases. Local power balance is applied to show that the heat transport in post-pellet phases is close to the neoclassical level for the ion channel and is about a factor of two above that level for the combined losses. In comparable gas-fuelled discharges, the heat transport is by about ten times larger than the neoclassical level, and thus is largely anomalous. It is further observed that the improvement in the transport is related to the peaked density profiles that lead to a stabilization of the ion-scale turbulence
    corecore