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A collisionless plasma possesses a certain amount of ‘available energy’, which is that
part of the thermal energy that can be converted into kinetic energy of plasma motion
and electromagnetic fluctuations. In this paper we present a calculation of the available
energy carried by trapped electrons in a slender non-omnigenous flux tube of plasma.
This quantity is compared with gyrokinetic simulations of the nonlinear saturated radial
energy flux resulting from turbulence driven by collisionless trapped-electron modes in
various stellarators and a tokamak. The numerical calculation of available energy is fast
and shows a strong correlation with the turbulent energy fluxes found in the gyrokinetic
simulations. Indeed, the energy flux is found to be proportional to the available energy
to the power of approximately 3/2, which is what one would expect from a simple
argument. We furthermore investigate how available energy is distributed across different
bounce wells, and it is found that deeply trapped electrons typically contribute most to the
available energy. Finally, we investigate the dependence of available energy on gradient
strength, and we find important differences between weakly and strongly driven regimes
for stellarators and tokamaks.

Keywords: fusion plasma, plasma nonlinear phenomena, plasma dynamics

1. Introduction

One of the major challenges facing magnetically confined fusion plasmas is the
degradation of energy confinement due to transport. This transport arises because the
density and temperature vary across the plasma volume, giving rise to neoclassical
transport as well as free energy which drives instabilities, turbulence and transport. The
dependence on the geometry of the magnetic field is well understood in the case of
neoclassical transport, and stellarators can be designed in such a way as to minimize these
losses (Wolf et al. 2017; Dinklage et al. 2018; Klinger et al. 2019; Beidler et al. 2021).

The main transport channel is then turbulent transport, which typically exceeds
the neoclassical channel, see e.g. Bozhenkov et al. (2020) and Beidler et al. (2021).
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Accordingly, insights into the interplay between turbulence and geometry are desired so
that one can understand, and perhaps minimize, the turbulent losses. However, due to the
complex nonlinear nature of the problem, it has proved difficult to quantify the dependence
of turbulence on geometry, although significant strides have been made in recent years
(Barnes, Parra & Schekochihin 2011; Proll et al. 2012; Helander, Proll & Plunk 2013;
Plunk et al. 2014; Pueschel et al. 2016; Citrin et al. 2017; Proll et al. 2022). These methods,
although not all of them, typically employ (quasi-)linear theory to estimate the turbulence
properties for any given configuration. Such methods do not always capture important
nonlinear effects and suffer, in particular, from uncertainties concerning the turbulent
saturation amplitude. The most reliable option to assess nonlinear turbulent transport is
to carry out nonlinear gyrokinetic simulations (Beer, Cowley & Hammett 1995; Garbet
et al. 2010), but it is currently computationally expensive to do so, although significant
improvements have been made (Mandell et al. 2022).

In a recent publication (Mackenbach, Proll & Helander 2022), it was shown that the
so-called available energy (Æ) can provide a quantitative estimate of the turbulence driven
by the trapped-electron mode (Kadomtsev & Pogutse 1967; Dannert & Jenko 2005), and
in the present paper we elaborate on the mathematical details of this calculation.

The Æ of a system is defined as the difference in energy between the ‘initial’ distribution
function fi (i.e. the distribution function at time t = 0), and the so-called ground state
fg (Lorenz 1955; Gardner 1963). The latter is the distribution function which minimizes
the energy, subject to constraints imposed by the Vlasov equation. We encapsulate the
constraints that follow from Liouville’s theorem in the following invariant:

H[ f (x, t), φ] ≡
∫
Θ[ f (x, t)− φ] dx, (1.1)

where Θ[x] is the Heaviside function, φ is a scalar constant and x are the phase-space
coordinates, (r, v). If the distribution function f evolves according to the Vlasov equation
or any other equation that conserves phase-space volume, one can show that H[ f , φ] is
conserved for every φ ∈ R (Helander 2017). Furthermore, we define the energy of the
distribution function as

E[ f (x, t)] ≡
∫
ε(x)f (x, t) dx, (1.2)

where ε(x) is the energy of a particle (typically mv2/2, with m and v being the particle
mass and speed, respectively). With these definitions, the ground state can be denoted as
the distribution function t minimizes the functional

W[ fg, λ] = E[ fg] +
∫
λ(φ)

(
H[ fi, φ] − H[ fg, φ]

)
dφ, (1.3)

where λ(φ) denotes a continuous set of Lagrange multipliers.
If one evaluates the variation of W with respect to fg, and requires that the distribution

function be a stationary point of the functional (that is δW/δfg = 0), one finds that a
ground state must be a function of energy alone

fg = fg(ε). (1.4)

Furthermore, if one considers the second variation with respect to fg and demands that this
quantity be positive definite (so that the ground state is a local minimum of the functional),
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one finds that the ground state must be a decreasing function of energy

∂fg

∂ε
≤ 0. (1.5)

One can also impose the condition that a set of adiabatic invariants, denoted by y, should
be conserved (as in Helander 2017, 2020), thus adding more constraints than (1.4) and
(1.5). The ground states are then functions satisfying

fg = fg(ε, y), (1.6a)(
∂fg

∂ε

)
y

≤ 0. (1.6b)

From these criteria it is possible to derive an integro-differential equation for the ground
state. For instance, it has been shown that, if we choose the magnetic moment μ and the
parallel invariant J as adiabatic invariants, the ground state fg(ε, μ,J ) must obey the
following integro-differential equation (Helander 2020):

(
∂fg(w, μ,J )

∂w

)
μ,J

= −

∫∫
δ[w − ε(ψ, α, μ,J )] dψ dα∫∫
δ[ fi − fg(w, μ,J )] dψ dα

. (1.7)

Here, w is a positive scalar which acts as a placeholder for the particle energy ε, ψ is the
magnetic flux (i.e. the flux-surface label) and α is the Clebsch angle, which locally define
the magnetic field as B = ∇ψ × ∇α (see D’haeseleer et al. (2012), chapter 5). Equation
(1.7) is relevant for most kinds of gyrokinetic turbulence in tokamaks and stellarators,
since μ and J are typically conserved quantities for trapped electrons in the case of
microinstabilities and turbulence with wavelengths comparable to the ion gyroradius.

In the literature, most numerical simulations of such phenomena are performed in the
geometry of a slender flux tube aligned with the magnetic field, and in this limit (1.7) can
be solved analytically. For the case of a vanishingly slender flux tube under the condition
of omnigeneity, i.e. that the second adiabatic invariant J is independent of the Clebsch
angle α (i.e. ∂J /∂α = 0), explicit expressions for the ground state and the Æ have been
found (Helander 2020). This derivation shows that a Maxwellian distribution function can
only be a ground state if the magnetic field is omnigenous and if the electron diamagnetic
drift frequency ωT

∗ does not exceed the bounce-averaged precession frequency ωα

ωT
∗/ωα ≤ 1, (1.8)

for all types of trapped-electron orbits in the flux tube. Here, the diamagnetic drift
frequency is equal to

ωT
∗ = T

q

[
d ln n
dψ

+ d ln T
dψ

(
ε

T
− 3

2

)]
, (1.9)

where T is the temperature, n is the number density, ε is the particle energy and q
is the particle charge. The criteria of (1.8) are met in quasi-isodynamic stellarators
with the so-called maximum-J property, and it has been shown from the (linear)
gyrokinetic equations that these devices are indeed resilient against conventional
density-gradient-driven trapped electron modes (TEMs) by Proll et al. (2012) and
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4 R.J.J. Mackenbach, J.H.E. Proll, R. Wakelkamp and P. Helander

Helander et al. (2013). When these modes are stabilized, other, less virulent, instabilities
become dominant instead (Helander & Plunk 2015; Plunk, Connor & Helander 2017;
Costello et al. 2023).

In this paper we first extend the calculation of Æ to non-omnigenous flux tubes, which
is of relevance since most stellarators are, in fact, not omnigenous. We first show that
such a calculation is most easily done in flux tubes which have an elliptical cross-section.
This calculation is described in § 2, where we also discuss how the Æ can be computed
numerically. In § 3 we compare the numerically calculated Æ in a tokamak and various
stellarators with the turbulent energy flux computed by the gyrokinetic code GENE (Jenko
et al. 2000). These results were recently published in abbreviated form Mackenbach
et al. (2022), and here we provide full mathematical details. We furthermore investigate
which types of trapped particles contribute most to Æ, and find that deeply trapped
particles typically do so. We also establish that the dependence on the gradient strength is
non-trivial and investigate this dependence in some depth. Finally, in § 4, we highlight our
most important findings and discuss future directions for research.

2. The ground state and available energy in a flux tube
2.1. Allowable domains

In the calculation of the ground state, we restrict our attention to a subregion of the
plasma which has the shape of a slender flux tube aligned with the magnetic field,
allowing us to approximate the distribution function by its first-order Taylor expansion
in the directions perpendicular to the field. Only then does it seem possible to solve the
integro-differential ground-state equation (1.7) in general. Somewhat surprisingly, it turns
out that the calculation is only possible if the cross-section of the flux tube is elliptical, as
we shall now see.

We first introduce the following re-scaled coordinates:

x = (ψ − ψ0)/
ψ, (2.1a)

y = (α − α0)/
α. (2.1b)

Here, ψ0 and α0 are the flux-surface label and field-line label of the magnetic field line
defining the centre of the flux tube, and 
ψ and 
α define its scale lengths in the ψ- and
α-directions, respectively. In contrast to the situation in most gyrokinetic simulations, the
cross-section of the flux tube is not assumed to be rectangular. In these coordinates, we
denote the first-order expansion of the distribution function f for fixed values of μ, J , and
t by

f (x, y, μ,J , t) ≡ f0 + fxx + fyy. (2.2)

For a given smooth distribution function, this representation should always be sufficiently
accurate in the limit of small 
ψ and 
α (i.e. for small enough ψ − ψ0 and α − α0
one can approximate f ≈ f0 + (ψ − ψ0)∂ψ f + (α − α0)∂αf ), but there is no guarantee that
the ground state corresponding to such a function can be similarly approximated by its
linear expansion. Indeed, this turns out to be true, in general, only if the domain Ω in the
(x, y)-plane under consideration is elliptical. As already mentioned, phase-space volume
conservation dictates that the following integral is independent of time for all values of φ:

d
dt

∫
Ω

Θ
[
φ − f (x, y, μ,J , t)

]
dx dy = 0. (2.3)

In particular, this integral must be the same for the initial (given) distribution function
and its corresponding ground state. We assume that both can be described by their
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linear approximations (2.2), whose gradients will, however, in general point in different
directions (i.e. ∇⊥f ∝ x̂fx + ŷfy can take on any value, with the hatted quantities denoting
unit vectors). We thus require that the gradient of the ground state may point in an arbitrary
direction and derive a constraint on the shape of Ω from this condition.

It is useful to define a rotated coordinate system (x, y) 	→ (x̃, ỹ)

x̃ = x cosϑ + y sinϑ + xmin(ϑ),

ỹ = −x sinϑ + y cosϑ + ymin(ϑ),

}
(2.4)

such that f assumes its smallest value, fmin, at x̃ = 0 and the gradient of f points in the
direction of x̃

f = fmin + fx̃x̃. (2.5)

In such a coordinate system the domain rotates as the function evolves, whilst fixing the
minimal values of x and y to x̃ = ỹ = 0, and this coordinate system will aid us in making
statements about this domain shape. The initial state and the ground state thus correspond
to two different values of ϑ . The width of the domain Ω in the x̃-direction is denoted by
2D(ϑ), so that the maximum value of f becomes fmax = fmin + 2Dfx̃, and the distribution
function may be written as

f = fmin + x̃
2D

(fmax − fmin) , (2.6)

where we note that fmin and fmax depend only on μ and J and are thus independent of ϑ .
We now return to the problem at hand, codified by (2.3). The argument of the Heaviside

function vanishes in the new coordinate system when

x̃(φ) = 2D
φ − fmin

fmax − fmin
. (2.7)

Let us now consider a value of φ very close to fmin, i.e. φ = fmin + |ε| with |ε| → 0+.
Equation (2.7) now reduces to x̃ε = 2D|ε|/( fmax − fmin). The integral in (2.3) is equal to
the area of the subdomain of Ω over which f ≤ φ, i.e. the coloured region in figure 1.
In the limit x̃ε � D, the radius of curvature, R, of the domain boundary in the region
x̃ < x̃ε is approximately constant (if the boundary is sufficiently smooth). Hence, we may
approximate the integral by instead considering the area of a circular segment with the
same radius of curvature R

A = 2
∫ x̃ε

0

√
2Rx̃ − x̃2 dx̃

≈ 2
∫ x̃ε

0

√
2Rx̃ dx̃ = 4

3

√
2Rx̃3

ε, (2.8)

where we have used the equation for a circle ỹ2 = R2 − (x̃ − R)2. The next step is to
realize that, as the distribution function evolves, its gradient may point in any direction
in the (x, y)-plane, so that the angle ϑ may assume any value. A sketch of the domain at a
different orientation is also given in figure 1. Both D and R depend on ϑ , but they are not
independent. Indeed, from (2.3) we have

R(ϑ)D(ϑ)3 = CA = constant, (2.9)

where we have used the equation for the area found in (2.8). In particular, the radius of
curvature is the same at the two extremal locations x̃ = 0 and x̃ = 2D, since a rotation of π
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(a) (b)

FIGURE 1. A sketch of the area, coloured red, as a subset of the entire domain Ω . Done at two
different times, so that the orientation of the domain Ω is different.

leaves D unchanged. Moreover, on purely geometrical grounds there is a relation between
the second derivative of the domain width and the curvature, as shown in Appendix A,

d2D
dϑ2

= R − D. (2.10)

Using the constancy of RD3, we find that

d2D
dϑ2

+ D = CA
D3

=⇒ d
dϑ

[(
dD
dϑ

)2

+ D2 + CA
D2

]
= 0. (2.11)

As shown in Appendix A, this differential equation has the general solution

D(ϑ) = (C2 − CA)1/4
√

C + cos 2ϑ, (2.12)

implying that the radius of curvature becomes

R(ϑ) = CA
(C2 − CA)3/4(C + cos 2ϑ)3/2

. (2.13)

The radius of curvature for an ellipse is of the exact same form as (2.13) (as shown
in Appendix A), implying that Ω must be elliptical. We have thus found that the only
domain shape in which Liouville’s theorem can generally be satisfied is a slanted ellipse,
if the distribution function is to be approximated by its first-order Taylor expansion in the
coordinates perpendicular to the magnetic field.

2.2. The ground state and the available energy
As shown in the previous section the domain has to be a slanted ellipse, and here we shall
derive what the ground state and Æ is in such a system. To this end, let us first realize that
it is sufficient to calculate the Æ in an unslanted ellipse, which in the coordinates x and y
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of the previous section has the equation

x2

a2
+ y2

b2
= 1, (2.14)

with a ≤ b. We may then apply a rotation operator to find the result of any slanted ellipse.
Let us start, then, by considering (1.7) and one must evaluate integrals of the form

I[h] =
∫
Ω

δ[h] dψ dα, (2.15)

where h(ψ, α) is an arbitrary smooth function that vanishes in the centre of the domain,
h(0, 0) = 0. This condition has to do with the fact that a constant Maxwellian is the ground
state corresponding to an initial condition without gradients. As such, to lowest order
the difference between the Maxwellian and the ground state should vanish, implying that
h(0, 0) = 0 for the functions appearing in (1.7). Since we take the flux tube to be slender,
we approximate the function h as

h(ψ, α) ≈ x
ψ∂ψh + y
α∂αh. (2.16)

We next define the vector p = (x, y), so that one can write the linear expansion of h as

h ≈ p · n|∂ph|, (2.17)

where we have defined n ≡ ∂ph/|∂ph|, and derivatives of h are evaluated at the centre of
the flux tube. Equation (2.15) then becomes

I[h] = 
ψ
α

|∂ph|
∫
Ω

δ[p · n] dx dy. (2.18)

The integral measures the length of the line where h = 0 in the domain, which may be
found as follows. We realize that this line satisfies the equation

y = −hx

hy
x, (2.19)

where we have used the notation hx ≡ ∂xh. We may now find its intersection with the
ellipse given by (2.14), and one may readily verify that the points of intersection (x, y)
satisfy the equation

x2 + y2 = (ab)2
(hx)

2 + (hy)
2

(ahx)2 + (bhy)2
, (2.20)

and the integral thus becomes

I[h] = 
ψ
α

|∂ph| 2ab

√
h2

x + h2
y

(ahx)2 + (bhy)2

= 
ψ
α
2ab√

(ahx)2 + (bhy)2
. (2.21)
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Our final step is to rotate the domain, which is equivalent to rotating the vector ∂ph, for
which one can use the rotation mapping

hx 	→ hx cosϑ − hy sinϑ, (2.22a)

hy 	→ hx sinϑ + hy cosϑ, (2.22b)

where ϑ measures the angle of rotation. Combining results of (2.21) and (2.22), we find

I[h] = 
ψ
α

b
√

h2
x + h2

y − E2
ϑ

,

Eϑ(hx, hy) ≡ e
(
hx cosϑ − hy sinϑ

)
,

⎫⎪⎪⎬
⎪⎪⎭ (2.23)

where the eccentricity e ∈ [0, 1) is defined as e2 ≡ 1 − a2/b2. We are now in a position to
evaluate the ground state; first choose the initial distribution function to be a Maxwellian
(as usually done in gyrokinetic simulations)

fM = n(ψ)
(

m
2πT(ψ)

)3/2

exp(−ε/T(ψ)). (2.24)

Here, n(ψ) is the number density, m is the electron mass and T(ψ) is the electron
temperature. The spatial derivatives of the distribution and energy function can be
related to the bounce-averaged precession frequencies of the electron orbits (as shown
in Appendix B)

(
∂ε

∂ψ

)
μ,J ,α

= +qωα, (2.25a)

(
∂ε

∂α

)
μ,J ,ψ

= −qωψ, (2.25b)

(
∂fM

∂ψ

)
μ,J ,α

= +q
fM,0

T0

(
ωT

∗ − ωα
)
, (2.25c)

(
∂fM

∂α

)
μ,J ,ψ

= +q
fM,0

T0
ωψ. (2.25d)

Here, quantities with the subscript zero are quantities that are evaluated at the centre of the
flux tube, q is the electron charge, ωψ is the drift (precession) frequency in the ψ direction,
ωα is the corresponding frequency in the α direction and ωT

∗ is the electron diamagnetic
frequency. With these expressions, the numerator in (1.7) for the ground state becomes

∫∫
δ
[
w − ε0(μ,J )− qωαψ + qωψα

]
dψ dα = 
ψ
α

|qb|√(ωα
ψ)2 + (ωψ
α)2 − (Eϑ)2
.

(2.26)
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The denominator of (1.7) can be calculated in a similar manner. We conclude that the
ground-state distribution function has the following derivative:(

∂fg(w, μ,J )
∂w

)
μ,J

= − fM,0

T0
F,

F ≡
√
(ωT∗ − ωα)2(
ψ)2 + ω2

ψ(
α)
2 − Eϑ(
ψ[ωT∗ − ωα],
αωψ)2√

ω2
α(
ψ)

2 + ω2
ψ(
α)

2 − Eϑ(
ψωα,−
αωψ)2
.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.27)

Since the right-hand side is negative, the solution decreases with increasing energy, which
is a requirement for any ground state. In the limit of omnigeneity (thus ωψ = 0) one may
verify that the terms involving Eϑ cancel, and one retrieves the expression previously found
by Helander (2020). To evaluate the Æ, we must find the difference in energy between the
initial distribution function and the ground state

A =
∫
ε
(
fi − fg

)√
g dψ dα dμ dJ . (2.28)

Here,
√

g denotes the phase-space Jacobian, which reduces to
√

g = 4π/m2 (Helander
2017). Moreover, fi and fg can be approximated by their Taylor expansions

fg [ε(ψ, α, μ,J ), μ,J ] = fi,0 +
(
∂ε

∂ψ
ψ + ∂ε

∂α
α

)
∂fg(w, μ,J )

∂w

∣∣∣∣
w=ε0

+ · · · . (2.29)

It is useful to realize that the total number of particles within the domain for each pair of
μ and J is conserved, giving ∫∫ (

fi − fg
)

dψ dα = 0, (2.30)

which in turn implies that the Æ can be calculated, to leading order, as

A = 4π
ψ
α

m2

∫ (

ψ2 ∂ε

∂ψ

∂( fi − fg)

∂ψ
x2 +
α2 ∂ε

∂α

∂( fi − fg)

∂α
y2

)
dx dy dμ dJ . (2.31)

The integration across x and y is readily carried out by rotating the function x2 or y2 by
some angle, and integrating this function over the domain whose boundary is given in
(2.14). This may be readily calculated as

∫
(x cosϑ − y sinϑ)2 dx dy = πa2b2

4

(
cos2 ϑ

√
1 − e2 + sin2 ϑ√

1 − e2

)
≡ πa2b2

4
Ê2
ϑ,

(2.32a)∫
( y cosϑ + x sinϑ)2 dx dy = πa2b2

4

(
sin2 ϑ

√
1 − e2 + cos2 ϑ√

1 − e2

)
≡ πa2b2

4
Ě2
ϑ .

(2.32b)

Our final step is to impose that this area of the ellipse is the same area as the unit circle
(ab = 1), which may be achieved by an appropriate choice of 
ψ and/or 
α. We thus
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have

A = π2

(
q
ψ
α

m

)2 ∫∫
fM,0

T0

×
[
Ê2
ϑω

2
α

(
ωT

∗
ωα

− 1 + F
)

ψ


α
+ Ě2

ϑω
2
ψ (−1 + F)


α


ψ

]
dμ dJ . (2.33)

Again, in the limit ωψ → 0, the Æ reduces to the previously found expression (Helander
2020).1 The above equation is the central result of this paper, and may be interpreted as the
most general result of the local available energy of trapped particles. To simplify further
steps of the calculation, we shall specialize to the case in which the cross-section is circular
in (x, y), which implies e = 0. Note that this does not imply that the cross-section is also
circular in (ψ, α)-space: in these coordinates it is still an ellipse whose semi-major and
semi-minor axes lie on lines of constant ψ and α. This furthermore has as a consequence
that the various functions dependent on the angle of rotation and eccentricity simplify
to E2

ϑ = 0, Ê2
ϑ = Ě2

ϑ = 1, simplifying the calculations significantly. If the eccentricity is
non-zero but small, the leading-order correction is of order O(e2).

2.3. Making the integral dimensionless
We proceed by making the expression for Æ dimensionless. We first normalize the
magnetic field to some reference strength B0

B() = B0B̂. (2.34)

Here, B() is the magnetic-field strength as a function of the arc length  along the flux
tube. As in neoclassical transport theory (see Helander & Sigmar (2005), chapter 7), it is
useful to perform a change of variables, (μ,J ) 	→ (λ, z), with

λ = μB0

ε0
, z = ε0

T0
. (2.35a,b)

In these variables, the second adiabatic invariant becomes

J =
√

2 mT0
√

z
∫

{b}

√
1 − λB̂ d, (2.36)

if the electric field parallel to B vanishes. Here, we have introduced a shorthand for the
integration domain, which is given by the interval in  between two consecutive bounce
points

{b}; 1 − λB̂(b) = 0. (2.37)

The derivatives of J can be used to find bounce-averaged precession frequencies, as
shown in Appendix B. We now define dimensionless precession frequencies, which are
the dimensionless equivalents of the precession and drift frequencies in (2.25),

ω̂α(λ,
ψ) ≡ q
ψ
ε0

ωα(λ), (2.38a)

ω̂ψ(λ,
α) ≡ q
α
ε0

ωψ(λ), (2.38b)

1The result is nearly identical, up to the factor Ê2
ϑ . This factor may, however, be absorbed into 
ψ , resulting in the

same equation as Helander (2020).
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ω̂T
∗ (z,
ψ) ≡ q
ψ

ε0
ωT

∗ (z). (2.38c)

Finally, one needs to account for the change in the volume element from (μ,J ) 	→ (z, λ).
The Jacobian of this transformation, which we denote by G1/2, is

G1/2(z, λ) = L
B̄

√
mT3/2

0√
2

√
z
∫

{b}

1√
1 − λB̂

d
L

≡ L
B̄

√
mT3/2

0√
2

√
zĜ1/2(λ), (2.39)

where L denotes the length of the magnetic-field line. We are now in a position to express
the Æ in terms of these new variables

A = 1
4
√

π

π
ψ
αL
B̄

n0T0

∫∫ ∑
wells(λ)

e−zz5/2

×
[
ω̂2
α

(
ω̂T

∗
ω̂α

− 1 + F̂
)

+ ω̂2
ψ

(
−1 + F̂

)]
Ĝ1/2 dz dλ. (2.40)

Here, we have introduced a summation over all bounce wells corresponding to a given
value of λ, and we have introduced the nonlinear function

F̂ =
√
(ω̂T∗ − ω̂α)2 + ω̂2

ψ√
ω̂2
α + ω̂2

ψ

. (2.41)

The prefactor in front of the integral in (2.40) is readily interpreted. The factor
πn0
ψ
αL/B̄ is roughly the amount of particles residing in our flux tube, which we
will call N, and hence the Æ is proportional to the total energy of these particles, NT0.
It is furthermore relatively straightforward to show that the integrand of (2.40) is always
positive definite, as follows from the expression

I(ω̂α, ω̂ψ, ω̂T
∗ ) = ω̂2

α

(
ω̂T

∗
ω̂α

− 1 +
√
(ω̂T∗ − ω̂α)2 + (ω̂ψ)2√
(ω̂α)2 + (ω̂ψ)2

)

+ ω̂2
ψ

(
−1 +

√
(ω̂T∗ − ω̂α)2 + (ω̂ψ)2√
(ω̂α)2 + (ω̂ψ)2

)
. (2.42)

Since

I(ω̂α, ω̂ψ, ω̂T
∗ )

ω̂2
α + ω̂2

ψ

= ω̂T
∗ ω̂α

ω̂2
α + ω̂2

ψ

+
√
(ω̂α − ω̂T∗ )2 + ω̂2

ψ

ω̂2
α + ω̂2

ψ

− 1

= ω̂T
∗ ω̂α

ω̂2
α + ω̂2

ψ

− 1 +

√√√√(
ω̂T∗ ω̂α
ω̂2
α + ω̂2

ψ

− 1

)2

+
(
ω̂T∗ ω̂ψ
ω̂2
α + ω̂2

ψ

)2

≥ 0, (2.43)

the integrand in (2.40) must be positive definite, and so is therefore the Æ. It is also clear
from this argument that even a small degree of non-omnigeneity in the magnetic-field
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geometry endows available energy to a plasma which otherwise has none, for the
right-hand side of (2.43) is always positive if ω̂ψ �= 0. In other words, a Maxwellian can
only be a ground state if the magnetic field is omnigenous (Helander 2020).

Our final step is to find the fraction of energy that is available. The thermal energy of
a plasma in a flux tube can readily be calculated to leading order in the perpendicular
coordinates as

Et = 3
2

∫
nT
B

dψ dα d ≈ 3
2

n0T0
π
ψ
αL

B0

∫
1

B̂

d
L
. (2.44)

Hence, the fraction of energy that is available is equal to

A
Et

= 2
3

(∫
4
√

π

B̂

d
L

)−1 ∫∫ ∑
wells(λ)

e−zz5/2

×
[
ω̂2
α

(
ω̂T

∗
ω̂α

− 1 + F̂
)

+ ω̂2
ψ

(
−1 + F̂

)]
Ĝ1/2 dz dλ. (2.45)

2.4. Relating available energy to turbulence
Our next step is to relate Æ to typical turbulence quantities, but there is basic difficulty
having to do with the question of how these scale with the size of the system. There
exist types of turbulence which depend on the size and shape of the domain in which it
takes place, but we are mainly interested in turbulence for which this is not the case if
the domain is large enough. We will refer to such turbulence as ‘local’. In a sufficiently
resolved simulation, the correlation length of local turbulence will be smaller than the
computational domain. Furthermore, if we expect Æ to encapsulate information about
local turbulence, it should act as an extensive thermodynamic variable and thus scale
linearly with the simulation volume. In expression (2.40), however, we see that under
the replacement (
ψ,
α) 	→ C(
ψ,
α) the Æ transforms as A 	→ C4A (as ω̂ψ and
ω̂α scale linearly with C). The underlying physical reason is that the Æ measures the
maximum amount of energy that can be released by redistributing plasma over the entire
domain, which scales as the volume of the domain (∼C2) multiplied by the square of
the variation of the distribution function over the domain (∼C2), see Helander (2017).
Local turbulence, however, is only able to redistribute plasma over some finite length scale
comparable to the correlation length. The latter can be different in the two directions
perpendicular to the magnetic field, and the appropriate choice for the domain size
over which the system can redistribute particles are these length scales in the ψ- and
α-directions.2 Let us denote these length scales by 
ψA and 
αA, respectively. For fixed

ψA and 
αA we see that (2.45) is indeed independent of the domain size, and hence the
total Æ acts as a thermodynamic variable.

To choose these length scales appropriately, we define radial and binormal coordinates
in units of length by

r = a

√
ψ

ψtot
, s = r0α, (2.46a,b)

2Let us note in passing that choosing the length scales to be similar to the correlation length coincides with the
elliptical cross-section being a natural choice. Denoting the inner product

∫
f (r + r′)g(r′) dr′ ≡ 〈f (r), g〉, the correlation

function may be written as Ccorr(r) = 〈φ(r), φ〉/√〈φ(r), φ(r)〉〈φ, φ〉, with φ being the electrostatic potential. To leading
order in smallness of r, the level curves of Ccorr are then elliptical, in line with the chosen domain shape.
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where ψtot is the total toroidal flux passing through the last closed flux surface, and r0 =
a
√
ψ0/ψtot. In terms of these coordinates, we require that the length scales are of the form


rA = Crρ, 
sA = Csρ, (2.47a,b)

where ρ is the Larmor radius, and Cr and Cy are functions of order O(ρ0), which
can depend on the equilibrium parameters such as the rotational transform ι or the
magnetic shear s. We note that, by choosing proportionality to the gyroradius, the Æ
becomes proportional to the expansion parameter (ρ∗)2 ≡ (ρ/Lref)

2, with Lref being some
equilibrium length scale. This is because ωα and ωψ are set by the equilibrium and exhibit
an L−1

ref dependence. The ratio of Cr/Cs is a measure of anisotropy; if Cr/Cs = 1 the
correlation length is similar in the radial and binormal direction. Conversely, if there are
large radial streamers present in a system one could reasonably expect Cr/Cs � 1. As
such, it is unclear a priori what a proper length scaleis for both Cr and Cs, as it will in
general depend on the specific structure of the turbulence. For the rest of the investigation,
we shall make use of the simplest possible ansatz for Cr and Cs: we shall take them to be
equal and independent of equilibrium parameters, i.e.

Cr = Cs = 1. (2.48)

Finally, to facilitate a comparison with nonlinear gyrokinetic turbulence simulations, we
define a dimensionless Æ

Â = A
Etρ2∗

. (2.49)

Note that this choice for Â differs from the one used in Mackenbach et al. (2022), (up to a
constant prefactor) by the factor (

∫
B̂−1 d/L)−1. In the results which are to be presented

the inclusion or exclusion of this factor does not alter the results significantly. In devices
with large variation in the magnetic-field strength, however, this factor can change Â to a
greater extent. Since the above expression for Â is the fraction of energy that is available in
the flux tube, we find that this definition is more natural. Finally, we denote some important
dependencies of Â. Firstly, upon rescaling (Cr,Cs) 	→ C(Cr,Cs) by a factor C, the Æ
scales as Â 	→ C2Â. A rescaling of Cr and Cs may thus have a significant impact on the
Æ. Furthermore, if one increases the magnitude of Cs for fixed Cr, (2.43) implies that the
Æ will increase as well. In general, one should thus expect results to be dependent on the
choice of Cr and Cs, and the choice of Cr = Cs = 1 should be interpreted as the simplest
possible model for these functions.

3. Results
3.1. Comparison with nonlinear gyrokinetics

A routine for calculating the Æ has been implemented in python3 , with numerical routines
discussed in Mackenbach et al. (2023). The calculations are very fast; in the current
implementation less than a CPU minute is required to obtain a sufficiently resolved result.
We compare the Æ of various devices with saturated turbulent energy fluxes calculated
by nonlinear flux-tube simulations in the GENE code. More specifically we compare the
dimensionless Æ, as defined in (2.49), with the normalized saturated radial energy flux

3The code is available on GitHub: https://github.com/RalfMackenbach/AEpy.
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Q̂sat defined as

Q̂sat =
∫

tsat

Qe(t) dt/
(

tsatρ
2
∗n0T0

√
T0/m

)
. (3.1)

Here, Qe(t) is the instantaneous total radial electron energy flux across the tube as a
function of time, and tsat denotes the time span of the simulation in which the turbulence
is saturated, which should exceed the time in which the energy flux saturates. The
simulation set consists of both density-gradient- and electron-temperature-gradient-driven,
collisionless, electrostatic turbulence simulations, the majority of which have been
discussed in Proll et al. (2022). The ion temperature gradient is chosen to be zero in order
to avoid effects from ion temperature gradient modes, which are not accounted for by our
model since only the Æ of electrons is considered. Furthermore, collisions are negligible
in sufficiently hot plasmas, and may not alter the Æ significantly as long as conservation of
μ and J holds on time scales comparable to the inverse instability frequency (Kolmes &
Fisch 2020). Finally, since electromagnetic effects only become relevant at relatively high
normalized plasma pressure, they are neglected (Püschel 2009; Aleynikova et al. 2018).

The results of this analysis are plotted in figure 2, which exhibits a close correlation
between turbulent transport and Æ in one tokamak and various stellarators for various
values of the density gradient as indicated in colour. The gradients are expressed in terms
of Lref/Ln, where Ln is the length scale of the density gradient defined as Ln = −n/(dn/dr),
with r being the minor radial coordinate. Furthermore, two grey points are included which
have no density gradient and an electron temperature gradient of LT = −T/(dT/dr) = 3.4
A peculiarity occurs in the data set from the high-mirror magnetic configuration in W7-X,
at Lref/Ln = 2. Surprisingly, this data point has a lower energy flux than the Lref/Ln = 1
case, which is counter-intuitive as stronger gradients usually lead to more turbulence. It is
postulated that this peculiar behaviour is due to a difference in the dominant instability,
leading to the difference in transport. At low gradients, the ion-driven TEM (iTEM) may
be dominant in W7-X High Mirror (HM), which unlike the ordinary TEM derives its
energy from the ions (Plunk et al. 2017). At high gradients, it is expected that the universal
instability starts to dominate transport (Helander & Plunk 2015; Landreman, Antonsen
& Dorland 2015; Costello et al. 2023). Neither of these instabilities derive energy from
the trapped electrons, and it is not self-evident that the Æ of trapped electrons should be
correlated with turbulent transport in this regime.

A power law is found by fitting a straight line to the log–log plot given in figure 2, where
we have excluded the grey points from the fitting procedure. The fit results in

Qsat ∝ A1.5±0.1. (3.2)

This relation is of interest, as it can be motivated in the following manner. The electron
energy flux density in the direction of ∇x is defined as

Qe = 1
Vsim

∫
εfe1(vD · ρ∇x) dx. (3.3)

Here, vD is the gyro-averaged drift velocity, and fe1 is the fluctuating part of the electron
distribution function (Görler 2010). We go on to crudely estimate this flux as

Qe ∼
√

〈v2
D〉

∫
εfe1 dx, (3.4)

4To avoid effects from electron temperature gradient turbulence, the grey points have the electron to ion temperature
ratio set to Te/Ti = 7.
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FIGURE 2. A scatter plot showing the normalized Æ for a range of stellarator and tokamak
plasmas and the average nonlinear saturated turbulent radial energy flux from gyrokinetic
simulations of these plasmas. The different points refer to different density gradients, as indicated
by the colour, and to different devices. The devices that are used in this analysis are the
tokamak DIII-D, the Helically Symmetric eXperiment (HSX) and the W7-X stellarator in both
high-mirror configuration (HM) and standard configuration (SC). The straight black line shows
the least-squares fit, which results in the power law ln Qsat ∝ (1.5 ± 0.1) ln A.

where the angular brackets denotes an average over the simulated volume. The integral in
this expression is bounded by the Æ, and hence we set

∫
εfe1 dx ∼ A. The average of the

squared drift velocity,

〈v2
D〉 =

〈(
E × B/B2)2

〉
, (3.5)

is proportional to the gyrokinetic energy of the electric field. Since the sum total of the
thermal and this field energy should be conserved (Helander 2017), this field energy is also
bounded by the Æ. We thus estimate that 〈v2

E〉 ∼ A, which gives

Qe ∝ A3/2, (3.6)

in agreement with the observed power law. We have furthermore tried different conditions
for particles which cross the computational boundary (Mackenbach et al. 2023), and we
find that the results are resilient against these such variations.

The two grey points lie significantly below the black line in figure 2. A possible reason
may be that all the other points refer to plasmas with a density gradient, in which there is,
in principle, Æ in both the electron and ion populations (although we have only considered
the electons). In contrast, for the grey points correspond to plasmas with an electron
gradient alone, implying that the Æ from the ions vanishes identically. There is thus less
energy to drive turbulence in this case.
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3.2. The distribution of Æ
We now go on to investigate how different trapped particle orbits contribute to the Æ. In
order to do so, we define an Æ per trapping well, namely

Âλ(λ) =
∫ ∞

0
e−zz5/2

[
ω̂2
α

(
ω̂T

∗
ω̂α

− 1 + F̂
)

+ ω̂2
ψ

(
−1 + F̂

)]
Ĝ1/2 dz, (3.7)

so that
∫ ∑

wells Âλ dλ = Â. For any given value of λ, this quantity can be calculated
separately for each trapping well. The bounce points associated with each λ, which we
denote by θb (with θ being the poloidal angle, our field-line following coordinate), satisfy

1 − λB̂(θb) = 0. (3.8)

One can then draw a straight line between the two bounce points of a bounce well, and
colour that line according to its associated Aλ. One can furthermore investigate ω̂α and ω̂ψ
as a function of their bounce points. This can be done by realizing that both ω̂α and ω̂ψ
can be mapped onto their bounce points using (3.8), and one can thus investigate how their
values depend on the bounce points.

A plot displaying the properties of (3.7) in this way is shown in figure 3 for the
case of the DIII-D tokamak with a normalizeddensity gradient Lref/Ln = 3. Additionally,
the binormal and radial drifts are shown as dashed green and dash-dotted blue lines,
respectively. For convenience, a black dotted line is also displayed which indicates where
ω̂ψ = ω̂α = 0. It can be seen that energy is available over most of the magnetic well. Only
the most shallowly trapped particles do not contribute to the Æ, as ω̂α changes sign for
these particles. This is in line with expectations, as the more deeply trapped particles
experience ‘bad curvature’ only, which in turn drives the TEM unstable (Proll et al. 2012;
Helander 2017). The contribution to the Æ from the trapped particle orbits is enhanced by
the positive magnetic shear in DIII-D (Connor, Hastie & Martin 1983). The most shallowly
trapped particles experience good curvature along most of their trajectories and exert, in
contrast to the deeply trapped particles, a stabilizing influence. Note that this figure refers
to a tokamak, which besides being exactly omnigenous only has a single trapping well.
Stellarators generally have many different bounce wells, and non-omnigenous effects arise
due to net radial drifts.

To investigate how these circumstances change the distribution of Æ across different
bounce wells, we show a plot of W7-X in its standard magnetic configuration in figure 4,
with a density gradient of Lref/Ln = 3. Several interesting features can be seen. The most
pronounced difference to the previous figure is that the Æ is much more localized than
in DIII-D, so that most of the contribution comes from a narrow range of bounce wells.
Most of the Æ comes from bright bands in the central well, particularly those where the
bounce well approaches the local maximum in B around θ = 0. One can understand this
observation in the following manner. Near the local maximum in field strength, the drift is
maximally bad (as ω̂α is most negative), and the trapped particles in this region contribute
significantly to the Æ. Furthermore, the Æ is weighted by Ĝ1/2, which is proportional
to the bounce time, which becomes large near such a local maximum. These two effects
combine in the central region, giving rise to the large Æ there. One can also see two
bright bands at B ≈ 1.10, which at first seems puzzling as the particles experience on
average good curvature in this band, as indicated by the positive sign of ω̂α. However,
these particles experience a net radial drift (ω̂ψ �= 0) and this non-omnigeneity causes the
Æ to be non-zero. Furthermore, it is exacerbated by the large bounce time, resulting in the
bright bands seen in the figure. Finally, one can see that, as in a tokamak, shallowly trapped
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FIGURE 3. The Æ per λ for DIII-D. The flux tube is located at a normalized radial flux of
ψ/ψedge = 0.5.

FIGURE 4. The Æ per λ for W7-X (SC). The flux tube is located at a normalized radial flux of
ψ/ψedge = 0.5.

particles barely contribute to the Æ, although the fraction of trapped particles which do
not contribute is significantly larger than in DIII-D.

In summary, the distribution of Æ across various bounce wells indicates that it is the
deeply trapped particles in regions of bad curvature which tend to be most destabilizing.
Furthermore, the bounce time plays an important role in determining which particles
contribute most to the Æ. Finally, we note that non-omnigenous effects can destabilize
otherwise stable regions.

3.3. Dependence on gradient strength
We finally investigate how the Æ depends on the strength of the gradient ω̂T

∗ , when all
other variables are kept constant. In the limit of large gradients, it is easy to see that (2.49)
implies a linear scaling with the gradient strength. We go one step further and expand the
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integrand around large ωT
∗ , which gives

Â ∝ ω̂T
∗

(
ω̂α + sgn(ω̂T

∗ )
√
ω̂2
α + ω̂2

ψ

)
Ĝ1/2, (3.9)

where sgn(x) = x/|x| is the sign function. In the opposite limit of small gradients, we
find an important distinction between omnigenous and non-omnigenous devices. In a
non-omnigenous device, one can expand (2.45) around small ω̂T

∗ , and one finds that in
a weakly driven regime the integrand becomes

Â ∝ (ω̂T
∗ )

2
ω̂2
ψ

ω̂2
α + ω̂2

ψ

Ĝ1/2. (3.10)

For an exactly omnigenous device, however, this result vanishes due to the factor ω̂2
ψ .

To find the correct scaling for such devices, we return to the expression for the Æ of
an omnigenous device first found in Helander (2020). Here, it was found that the Æ is
proportional to

Â ∝
∫∫

e−zz5/2ω̂2
αR

[
ω̂T

∗
ω̂α

− 1
]

Ĝ1/2 dλ dz, (3.11)

where R[x] = (x + |x|)/2 is the ramp function. Note that, when ω̂T
∗ is small, the ramp

function is non-zero in the region where ωα → 0. If we assume there exists a point where
ωα = 0 we can expand around the point ω̂α(λ0) = 0, and set

ω̂α ≈ ω̂λ(λ− λ0). (3.12)

Next, we find the region where the argument of the ramp function is positive by finding
where the argument vanishes

ω̂T
∗
ω̂α

− 1 = 0 =⇒ λ ≈ λ0 + ω̂T
∗
ω̂λ
. (3.13)

We can now perform the integral over the range λ ∈ [λ0, λ0 + ω̂T
∗/ω̂λ], and we find that

the Æ to leading order is proportional to

Â ∝
∫

e−zz5/2ω̂λω̂
T
∗

(
ω̂T

∗
ω̂λ

)2

Ĝ1/2(λ0) dz. (3.14)

Thus we conclude that, for weakly driven omnigenous devices, the Æ integrand scales as

Â ∝ |ω̂T
∗ |3 Ĝ1/2(λ0)

|ω̂λ| . (3.15)

Hence, in summary, we have

Â ∝

⎧⎪⎨
⎪⎩
(ω̂T

∗ ) if |ω̂T
∗ | � 1

(ω̂T
∗ )

2 if |ω̂T
∗ | � 1 and ω̂ψ �= 0

(ω̂T
∗ )

3 if |ω̂T
∗ | � 1 and ω̂ψ = 0.

(3.16)

The different scaling laws are displayed in figure 5, where we see a tokamak (which is
exactly omnigenous), a non-omnigenous stellarator and the optimized, fairly omnigenous,
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FIGURE 5. An example of the dependence of Æ on the gradient strength for three different
devices; a tokamak, a non-omnigenous stellarator and HSX. In the case displayed above, the
electron temperature gradient is set to zero. The dashed, dash-dotted, and dotted lines have a
linear, square and third-power scaling with the density gradient, respectively.

HSX stellarator. The plots show a distinct ‘knee’ at the transition from one scaling law
to the next. This knee is especially pronounced for the tokamak, and less so for the
stellarator. The difference in scaling for weakly and strongly driven regimes is interesting,
as the behaviour is reminiscent of gradient-threshold (also called critical-gradient) type
behaviour. Such a gradient threshold is signified by small transport up to some threshold in
the gradient followed by strong transport above this threshold (Dimits 2000), a behaviour
shared by the present plot. It is thought that this critical gradient plays an important role in
profile stiffness, where profiles tend to retain their shape without much sensitivity to the
details of the particle/energy sources (Garbet et al. 2004). It is also interesting to note that,
from the different scaling laws for omnigenous and non-omnigenous devices, one would
expect the critical-gradient-like behaviour of the Æ to be ‘softer’ in a non-omnigenous
stellarator, as the transition from a quadratic to a linear scaling law is more gradual than
that from a cubic one. If this gradient-threshold behaviour of the Æ indeed corresponds
to the true critical gradient, this would result in profiles being less stiff, which has
indeed observed in various stellarators (Milligen et al. 2008; Sanchez & Newman 2015).
Investigating HSX more closely, we see that for very low gradients it follows a quadratic
scaling, for moderate gradients it approaches a third-power scaling and for strong gradient
it is linear. This third-power region is a result of HSX being close to quasi-symmetry,
so that ω̂ψ is small. However, at small enough gradients, the ω̂ψ term starts to become
important causing the scaling to be quadratic.

Finally, we note the non-trivial dependence on ω̂α in the various regimes. When the
gradients are large, the Æ is linearly proportional to ω̂α, which quantifies ‘bad curvature’,
but for small gradients it is inversely proportional to ω̂α. This implies that one can reduce
the total Æ by increasing the amount of bad curvature. This would lead to reduced Æ in the
weakly driven regime, and the ‘knee’ point would be shifted to higher ω̂T

∗ , which would
lead to a higher critical gradient (as estimated from Æ). This is in line with recent results of
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Roberg-Clark, Plunk & Xanthopoulos (2022) and Roberg-Clark et al. (2023), who found
that the critical gradient can be increased by introducing more bad curvature into the
magnetic geometry, which thus leads to lower turbulent heat fluxes, although it should be
noted that those results concern ion-temperature-gradient-driven transport. An important
corollary of this property is that, in a device with particularly low Æ in the weakly driven
regime (much bad curvature), the Æ becomes very large in the strongly driven regime,
being linearly proportional to ω̂α when ω̂T

∗ � 1. One can thus either have a device with
a high gradient threshold and low Æ for small gradients (which may be attained by
increasing the amount of bad curvature), or a device with low Æ in the strongly driven
regime thanks to relatively little bad curvature in regions with many trapped particles.

4. Summary and conclusions

In this paper we have derived the Æ of trapped electrons in a slender flux tube of
magnetically confined plasma, and we have compared it with nonlinear saturated radial
electron energy fluxes as calculated by nonlinear gyrokinetic simulations. In deriving the
Æ, several key insights were required to make progress. Firstly, it was found that the
calculation is particularly simple in flux tubes with elliptical cross-section. An explicit
expression of the ground state can then be found, which was used to calculate the Æ to
leading order. The result is positive definite, as it must be, and reduces to a previously
found expression in the case that the magnetic field is omnigenous. Since the Æ depends
on the cross-section of the flux tube, its major and minor radii need to be chosen a priori.
The correct choice depends on the correlation length of the turbulence, which we take to
be proportional to the gyroradius in both directions.

We compared the resulting Æ for different magnetic geometries with the energy flux
computed in a set of simulations of density-gradient-driven turbulence. The numerical
Æ calculations are many orders of magnitude faster than the gyrokinetic simulations.
The analysis is done for 4 different magnetic configurations, DIII-D, HSX and W7-X
in its standard and high-mirror configurations. The saturated electron energy flux Qsat is
approximately related to the Æ via a simple power law Qsat ∝ A1.5±0.1. A straightforward
phenomenological model to explain the observed power law is proposed, which results
in Qsat ∝ A3/2. We go on to investigate which regions are driving the available energy.
The results can be understood in terms of simple geometrical concepts: bad curvature
(resulting in the drift being in resonance with the drift wave) and non-omnigeneity drive
Æ. We finally investigate the dependence of Æ on gradient and find that there are three
distinct scaling laws; for strong gradients the Æ scales linearly with the gradient strength,
whereas for weak gradients the Æ scales as the gradient strength squared or cubed for
non-omnigenous or exactly omnigenous fields, respectively.

These results are interesting for future research. The strong correlation between Æ and
energy flux across various devices indicates that it may serve as a good proxy function
for stellarator optimization codes (Spong et al. 2001; Landreman et al. 2021) used to
design stellarators with reduced turbulence. Direct gyrokinetic simulations can be too
time consuming to be carried out inside the optimization loop in such codes, so there is a
need for more efficiently estimating turbulent transport in given magnetic field. It is thus
of interest to understand how Æ is related to specific details in the field-line geometry.
As we have seen, regions of bad curvature are associated with large Æ, thus providing
a connection between previously known results from linear gyrokinetic stability theory
and Æ, but the latter also seems to possess predictive qualities for nonlinear transport.
Furthermore, one could also use the Æ derived here as a profile optimization tool for
TEM-dominated devices. One could then search for plasma profiles and adjustable coil
currents which minimize the Æ, under some set of constraints. Finally, it may also be
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valuable to derive expressions for Æ in more generic scenarios where turbulence is driven
by an ion temperature gradient.
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Appendix A. Details of the derivation of the domain shape

Here, we provide mathematical details for the argument given in § 2 concerning the
domain shape. We do so by means of a geometric argument, sketched in figure 6. Here, A
and A′ denote two points on the boundary with parallel tangents, TA and TA′ , respectively.
The distance between these tangents is 2D and the radius of curvature of the boundary at
A is R. If C is the point on TA′ that is closest to A we thus have |AC| = 2D. Next, we let B
and B′ denote boundary points in the vicinity A and A′, respectively, such that the tangents
through B and B′ are parallel, and we denote by E the point on the tangent through B′ that
is closest to B. Let us write the distance |BE| = 2(D + dD) and define |A′C| = 2L. To
leading order in smallness of dϑ we have |DC| = 2Ddϑ . Furthermore, to leading order
|B′E| = 2L, implying that |FE| = 2Ldϑ , where F denotes the intersection of BE and A′C.
All in all we find the leading-order relations

|BE| = |AD| + |FE|
2(D + dD) = 2D + 2Ldϑ

dD
dϑ

= L.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(A1)

Next, we investigate how L changes under some small change dϑ . Let us define |B′E| =
2L′ = 2(L + dL). Since |AB| = |A′B′| = Rdϑ and |CD| = 2Ddϑ , we have

2L′ = 2L + 2Rdϑ − 2Ddϑ

dL
dϑ

= R − D.

⎫⎬
⎭ (A2)

Combining these relations, one finds

d2D
dϑ2

= R − D, (A3)
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FIGURE 6. A geometric sketch showing the relation between D and R. The green vertical lines
passing through A and A′ are tangent to the boundary, as are the red ones passing through B
and B′.

and since R = CA/D3 the equation for the domain can be written as

dD
dϑ

= ±
√

2C − D2 − CA
D2
. (A4)

It is straightforward to solve for the inverse function, ϑ(D), which becomes

ϑ =
∫

dD√
2C − D2 − CA

D2

= 1
2

arcsin
(

D2 − C√
C2 − CA

)
+ const., (A5)

where the integration constant constitutes an unimportant phase, which we can chose
conveniently, e.g.

D2 =
√

C2 − CA(C + cos 2ϑ). (A6)

The radius of curvature thus becomes

R(ϑ) = CA
(C2 − CA)3/4(C + cos 2ϑ)3/2

. (A7)

Our final step is to verify that an ellipse has similar curvature. We first realize that

tanϑ = dy
dx
, (A8)

which for an ellipse, x2/a2 + y2/b2 = 1 implies that

tanϑ = −x
y

b2

a2
. (A9)
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Now, the radius of curvature for an ellipse may be written as

R = (ab)2

⎛
⎜⎜⎝

x2

a4
+ y2

b4

x2

a2
+ y2

b2

⎞
⎟⎟⎠

3/2

= b2

a

⎛
⎜⎜⎝

1 + 1
tan2 ϑ

1 + b2

a2 tan2 ϑ

⎞
⎟⎟⎠

3/2

= b2

a

⎛
⎜⎜⎝ 1

1 + b2/a2 − 1
2

(1 + cos 2ϑ)

⎞
⎟⎟⎠

3/2

. (A10)

This is of the same form as (A7), showing us that the ellipse is indeed the only sufficiently
smooth solution to the problem.

Appendix B. Relating derivatives to bounce-averaged frequencies

Here, we show how the derivatives of the energy and distribution function can be
related to bounce averaged frequencies. By investigating the bounce-averaged Lagrangian
of charged particles in electromagnetic fields, one can derive the following relations
(Helander & Sigmar 2005; Helander 2014):

∂J
∂α

= +q(δψ),
∂J
∂ψ

= −q(δα),
∂J
∂ε

= τb. (B1a–c)

Here, δψ is the total excursion in the ψ direction after a full bounce motion, δα is the
total excursion in the α direction after a full bounce motion and τb is the bounce time. In
general, we know that the second adiabatic invariant can be written as

J = J (ε, ψ, α, μ). (B2)

Taking the total differential of J we thus find

dJ = τb dε − q(δα) dψ + q(δψ) dα + ∂J
∂μ

dμ. (B3)

This allows us to readily find the derivatives of the energy function. We conclude that

(
∂ε

∂ψ

)
μ,J ,α

= +q
δα

τb
≡ +qωα, (B4a)

(
∂ε

∂α

)
μ,J ,ψ

= −q
δψ

τb
≡ −qωψ. (B4b)
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With these findings the derivatives of the Maxwellian can readily be evaluated(
∂fM

∂ψ

)
μ,J ,α

= +q
fM,0

T0

(
ωT

∗ − ωα
)
, (B5a)

(
∂fM

∂α

)
μ,J ,ψ

= +q
fM,0

T0
ωψ. (B5b)

Here, we have defined the electron diamagnetic drift frequency as ωT
∗ as

ωT
∗ ≡ T0

q
d ln n
dψ

(
1 + η

[
ε0

T0
− 3

2

])
, (B6)

and we have denoted the ratio between the gradients as η = (d ln T/dψ)/(d ln n/dψ).

REFERENCES

ALEYNIKOVA, K., ZOCCO, A., XANTHOPOULOS, P., HELANDER, P. & NÜHRENBERG, C. 2018 Kinetic
ballooning modes in tokamaks and stellarators. J. Plasma Phys. 84 (6).

BARNES, M., PARRA, F.I. & SCHEKOCHIHIN, A.A. 2011 Critically balanced ion temperature gradient
turbulence in fusion plasmas. Phys. Rev. Lett. 107 (11), 115003.

BEER, M.A., COWLEY, S.C. & HAMMETT, G.W. 1995 Field aligned coordinates for nonlinear
simulations of tokamak turbulence. Phys. Plasmas 2 (7), 2687–2700.

BEIDLER, C.D., SMITH, H.M., ALONSO, A., ANDREEVA, T., BALDZUHN, J., BEURSKENS, M.N.A.,
BORCHARDT, M., BOZHENKOV, S.A., BRUNNER, K.J., DAMM, H., et al. 2021 Demonstration of
reduced neoclassical energy transport in Wendelstein 7-X. Nature 596 (7871), 221–226.

BOZHENKOV, S.A., KAZAKOV, Y., FORD, O.P., BEURSKENS, M.N.A., ALCUSÓN, J., ALONSO, J.A.,
BALDZUHN, J., BRANDT, C., BRUNNER, K.J., DAMM, H., et al. 2020 High-performance plasmas
after pellet injections in Wendelstein 7-X. Nucl. Fusion 60 (6), 66011.

CITRIN, J., BOURDELLE, C., CASSON, F.J., ANGIONI, C., BONANOMI, N., CAMENEN, Y., GARBET,
X., GARZOTTI, L., GÖRLER, T., GÜRCAN, O., et al. 2017 Tractable flux-driven temperature,
density, and rotation profile evolution with the quasilinear gyrokinetic transport model QuaLiKiz.
Plasma Phys. Control. Fusion 59 (12), 124005.

CONNOR, J.W., HASTIE, R.J. & MARTIN, T.J. 1983 Effect of pressure gradients on the bounce-averaged
particle drifts in a tokamak. Nucl. Fusion 23 (12), 1702.

COSTELLO, P., PROLL, J.H.E., PLUNK, G.G., PUESCHEL, M.J. & ALCUSÓN, J.A. 2023 The universal
instability in optimised stellarators. J. Plasma Phys. 89 (4), 905890402.

DANNERT, T. & JENKO, F. 2005 Gyrokinetic simulation of collisionless trapped-electron mode turbulence.
Phys. Plasmas 12 (7), 072309.

D’HAESELEER, W.D., HITCHON, W.N.G., CALLEN, J.D. & SHOHET, J.L. 2012 Flux Coordinates and
Magnetic Field Structure: A Guide to a Fundamental Tool of Plasma Theory. Springer Science &
Business Media.

DIMITS, A.M. 2000 Comparisons and physics basis of tokamak transport models and turbulence
simulations. Phys. Plasmas 7 (3), 969–983.

DINKLAGE, A., BEIDLER, C.D., HELANDER, P., FUCHERT, G., MAAßBERG, H., RAHBARNIA, K.,
PEDERSEN, T.S., TURKIN, Y., WOLF, R.C. & ALONSO, A. 2018 Magnetic configuration effects
on the Wendelstein 7-X stellarator. Nat. Phys. 14 (8), 855–860.

GARBET, X., IDOMURA, Y., VILLARD, L. & WATANABE, T.H. 2010 Gyrokinetic simulations of turbulent
transport. Nucl. Fusion 50 (4), 043002.

GARBET, X., MANTICA, P., RYTER, F., CORDEY, G., IMBEAUX, F., SOZZI, C., MANINI, A., ASP, E.,
PARAIL, V., WOLF, R., et al. 2004 Profile stiffness and global confinement. Plasma Phys. Control.
Fusion 46 (9), 1351.

GARDNER, C.S. 1963 Bound on the energy available from a plasma. Phys. Fluids 6 (6), 839–840.
GÖRLER, T. 2010 Multiscale effects in plasma microturbulence. PhD thesis, Universität Ulm.

https://doi.org/10.1017/S0022377823001083 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377823001083


Available energy of trapped electrons and turbulent transport 25

HELANDER, P. 2014 Theory of plasma confinement in non-axisymmetric magnetic fields. Rep. Prog. Phys.
77 (8), 087001.

HELANDER, P. 2017 Available energy and ground states of collisionless plasmas. J. Plasma Phys. 83 (4).
HELANDER, P. 2020 Available energy of magnetically confined plasmas. J. Plasma Phys. 86 (2).
HELANDER, P. & PLUNK, G.G. 2015 The universal instability in general geometry. Phys. Plasmas 22 (9),

090706.
HELANDER, P., PROLL, J.H.E. & PLUNK, G.G. 2013 Collisionless microinstabilities in stellarators. I.

Analytical theory of trapped-particle modes. Phys. Plasmas 20 (12), 122505.
HELANDER, P. & SIGMAR, D.J. 2005 Collisional Transport in Magnetized Plasmas, vol. 4. Cambridge

University Press.
JENKO, F., DORLAND, W., KOTSCHENREUTHER, M. & ROGERS, B.N. 2000 Electron temperature

gradient driven turbulence. Phys. Plasmas 7 (5), 1904–1910.
KADOMTSEV, B.B. & POGUTSE, O.P. 1967 Plasma instability due to particle trapping in a toroidal

geometry. Sov. Phys. JETP 24, 1172–1179.
KLINGER, T., et al. 2019 Overview of first Wendelstein 7-X high-performance operation. Nucl. Fusion 59

(11), 112004.
KOLMES, E.J. & FISCH, N.J. 2020 Recovering Gardner restacking with purely diffusive operations. Phys.

Rev. E 102 (6), 63209.
LANDREMAN, M., ANTONSEN, T.M. JR. & DORLAND, W. 2015 Universal instability for wavelengths

below the ion larmor scale. Phys. Rev. Lett. 114 (9), 095003.
LANDREMAN, M., MEDASANI, B., WECHSUNG, F., GIULIANI, A., JORGE, R. & ZHU, C. 2021 Simsopt:

a flexible framework for stellarator optimization. J. Open Source Softw. 6 (65), 3525.
LORENZ, E.N. 1955 Available potential energy and the maintenance of the general circulation. Tellus 7

(2), 157–167.
MACKENBACH, R.J.J., DUFF, J.M., GERARD, M.J., PROLL, J.H.E., HELANDER, P. & HEGNA,

C.C. 2023 Bounce-averaged drifts: equivalent definitions, numerical implementations, and example
cases. Phys. Plasmas 30 (9), 093901.

MACKENBACH, R.J.J., PROLL, J.H.E. & HELANDER, P. 2022 Available energy of trapped electrons and
its relation to turbulent transport. Phys. Rev. Lett. 128 (17), 175001.

MANDELL, N.R., DORLAND, W., ABEL, I., GAUR, R., KIM, P., MARTIN, M. & QIAN, T. 2022 GX: a
GPU-native gyrokinetic turbulence code for tokamak and stellarator design. arXiv:2209.06731.

MILLIGEN, B.P., TRIBALDOS, V., VARGAS, V.I. & SANCHEZ, R. 2008 Quantifying profile stiffness.
Tech. Rep.

PLUNK, G.G., CONNOR, J.W. & HELANDER, P. 2017 Collisionless microinstabilities in stellarators. Part
4. The ion-driven trapped-electron mode. J. Plasma Phys. 83 (4).

PLUNK, G.G., HELANDER, P., XANTHOPOULOS, P. & CONNOR, J.W. 2014 Collisionless
microinstabilities in stellarators. III. The ion-temperature-gradient mode. Phys. Plasmas 21 (3),
032112.

PROLL, J.H.E., HELANDER, P., CONNOR, J.W. & PLUNK, G.G. 2012 Resilience of quasi-isodynamic
stellarators against trapped-particle instabilities. Phys. Rev. Lett. 108 (24), 245002.

PROLL, J.H.E., PLUNK, G.G., FABER, B.J., GÖRLER, T., HELANDER, P., MCKINNEY, I.J.,
PUESCHEL, M.J., SMITH, H.M. & XANTHOPOULOS, P. 2022 Turbulence mitigation in
maximum-J stellarators with electron-density gradient. J. Plasma Phys. 88 (1), 905880112.

PÜSCHEL, M.J. 2009 Electromagnetic effects in gyrokinetic simulations of plasma turbulence. PhD thesis,
Universität Münster.

PUESCHEL, M.J., FABER, B.J., CITRIN, J., HEGNA, C.C., TERRY, P.W. & HATCH, D.R. 2016
Stellarator turbulence: subdominant eigenmodes and quasilinear modeling. Phys. Rev. Lett. 116 (8),
85001.

ROBERG-CLARK, G.T., PLUNK, G.G. & XANTHOPOULOS, P. 2022 Coarse-grained gyrokinetics for the
critical ion temperature gradient in stellarators. Phys. Rev. Res. 4 (3), L032028.

ROBERG-CLARK, G.T., PLUNK, G.G., XANTHOPOULOS, P., NÜHRENBERG, C., HENNEBERG, S.A. &
SMITH, H.M. 2023 Critical gradient turbulence optimization toward a compact stellarator reactor
concept. arXiv:2301.06773.

https://doi.org/10.1017/S0022377823001083 Published online by Cambridge University Press

arXiv:2209.06731
arXiv:2301.06773
https://doi.org/10.1017/S0022377823001083


26 R.J.J. Mackenbach, J.H.E. Proll, R. Wakelkamp and P. Helander

SANCHEZ, R. & NEWMAN, D.E. 2015 Self-organized criticality and the dynamics of near-marginal
turbulent transport in magnetically confined fusion plasmas. Plasma Phys. Control. Fusion 57 (12),
123002.

SPONG, D.A., HIRSHMAN, S.P., BERRY, L.A., LYON, J.F., FOWLER, R.H., STRICKLER, D.J., COLE,
M.J., NELSON, B.N., WILLIAMSON, D.E., WARE, A.S., et al. 2001 Physics issues of compact
drift optimized stellarators. Nucl. Fusion 41 (6), 711.

WOLF, R.C., ALI, A., ALONSO, A., BALDZUHN, J., BEIDLER, C., BEURSKENS, M., BIEDERMANN,
C., BOSCH, H.-S., BOZHENKOV, S., BRAKEL, R., et al. 2017 Major results from the first plasma
campaign of the Wendelstein 7-X stellarator. Nucl. Fusion 57 (10), 102020.

https://doi.org/10.1017/S0022377823001083 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377823001083

	1 Introduction
	2 The ground state and available energy in a flux tube
	2.1 Allowable domains
	2.2 The ground state and the available energy
	2.3 Making the integral dimensionless
	2.4 Relating available energy to turbulence

	3 Results
	3.1 Comparison with nonlinear gyrokinetics
	3.2 The distribution of Æ
	3.3 Dependence on gradient strength

	4 Summary and conclusions
	Appendix A. Details of the derivation of the domain shape
	Appendix B. Relating derivatives to bounce-averaged frequencies
	References

