1,889 research outputs found
THz-Frequency Spin-Hall Auto-Oscillator Based on a Canted Antiferromagnet
We propose a design of a THz-frequency signal generator based on a layered
structure consisting of a current-driven platinum (Pt) layer and a layer of an
antiferromagnet (AFM) with easy-plane anisotropy, where the magnetization
vectors of the AFM sublattices are canted inside the easy plane by the
Dzyaloshinskii-Moriya interaction (DMI). The DC electric current flowing in the
Pt layer creates, due to the spin-Hall effect, a perpendicular spin current
that, being injected in the AFM layer, tilts the DMI-canted AFM sublattices out
of the easy plane, thus exposing them to the action of a strong internal
exchange magnetic field of the AFM. The sublattice magnetizations, along with
the small net magnetization vector of the canted AFM,
start to rotate about the hard anisotropy axis of the AFM with the THz
frequency proportional to the injected spin current and the AFM exchange field.
The rotation of the small net magnetization results in
the THz-frequency dipolar radiation that can be directly received by an
adjacent (e.g. dielectric) resonator. We demonstrate theoretically that the
radiation frequencies in the range ~THz are possible at the
experimentally reachable magnitudes of the driving current density, and
evaluate the power of the signal radiated into different types of resonators,
showing that this power increases with the increase of frequency , and that
it could exceed 1~W at ~THz for a typical dielectric resonator
of the electric permittivity and quality factor
Local information transfer as a spatiotemporal filter for complex systems
We present a measure of local information transfer, derived from an existing
averaged information-theoretical measure, namely transfer entropy. Local
transfer entropy is used to produce profiles of the information transfer into
each spatiotemporal point in a complex system. These spatiotemporal profiles
are useful not only as an analytical tool, but also allow explicit
investigation of different parameter settings and forms of the transfer entropy
metric itself. As an example, local transfer entropy is applied to cellular
automata, where it is demonstrated to be a novel method of filtering for
coherent structure. More importantly, local transfer entropy provides the first
quantitative evidence for the long-held conjecture that the emergent traveling
coherent structures known as particles (both gliders and domain walls, which
have analogues in many physical processes) are the dominant information
transfer agents in cellular automata.Comment: 12 page
Noise properties of a resonance-type spin-torque microwave detector
We analyze performance of a resonance-type spin-torque microwave detector
(STMD) in the presence of noise and reveal two distinct regimes of STMD
operation. In the first (high-frequency) regime the minimum detectable
microwave power is limited by the low-frequency Johnson-Nyquist
noise and the signal-to-noise ratio (SNR) of STMD is proportional to the input
microwave power . In the second (low-frequency) regime is limited by the magnetic noise, and the SNR is proportional to
. The developed formalism can be used for the optimization
of the practical noise-handling parameters of a STMD.Comment: 3 pages, 2 figure
RoboCup 2D Soccer Simulation League: Evaluation Challenges
We summarise the results of RoboCup 2D Soccer Simulation League in 2016
(Leipzig), including the main competition and the evaluation round. The
evaluation round held in Leipzig confirmed the strength of RoboCup-2015
champion (WrightEagle, i.e. WE2015) in the League, with only eventual finalists
of 2016 competition capable of defeating WE2015. An extended, post-Leipzig,
round-robin tournament which included the top 8 teams of 2016, as well as
WE2015, with over 1000 games played for each pair, placed WE2015 third behind
the champion team (Gliders2016) and the runner-up (HELIOS2016). This
establishes WE2015 as a stable benchmark for the 2D Simulation League. We then
contrast two ranking methods and suggest two options for future evaluation
challenges. The first one, "The Champions Simulation League", is proposed to
include 6 previous champions, directly competing against each other in a
round-robin tournament, with the view to systematically trace the advancements
in the League. The second proposal, "The Global Challenge", is aimed to
increase the realism of the environmental conditions during the simulated
games, by simulating specific features of different participating countries.Comment: 12 pages, RoboCup-2017, Nagoya, Japan, July 201
Environmental Improvement Of Opencast Mining
Existing classifications of waste dumps in the quarries are given and their phenomenological nature is clarified. The need to identify the essence of the term "dump" is shown as well as the idea of "dump" as an artificial formation with everted and mixed rocks distanced from the quarry. Essential classification of man-made rock formations in quarries is developed. Characteristic of variations of man-made waste formations in quarries is developed. To reduce harmful effects of open-pit mining, dumps should be substituted with strat-lays - man-made structures relevant to natural stratification of litho-substances. Construction of strat-lays would improve ecological and technological culture of open cast mining
Empowerment for Continuous Agent-Environment Systems
This paper develops generalizations of empowerment to continuous states.
Empowerment is a recently introduced information-theoretic quantity motivated
by hypotheses about the efficiency of the sensorimotor loop in biological
organisms, but also from considerations stemming from curiosity-driven
learning. Empowemerment measures, for agent-environment systems with stochastic
transitions, how much influence an agent has on its environment, but only that
influence that can be sensed by the agent sensors. It is an
information-theoretic generalization of joint controllability (influence on
environment) and observability (measurement by sensors) of the environment by
the agent, both controllability and observability being usually defined in
control theory as the dimensionality of the control/observation spaces. Earlier
work has shown that empowerment has various interesting and relevant
properties, e.g., it allows us to identify salient states using only the
dynamics, and it can act as intrinsic reward without requiring an external
reward. However, in this previous work empowerment was limited to the case of
small-scale and discrete domains and furthermore state transition probabilities
were assumed to be known. The goal of this paper is to extend empowerment to
the significantly more important and relevant case of continuous vector-valued
state spaces and initially unknown state transition probabilities. The
continuous state space is addressed by Monte-Carlo approximation; the unknown
transitions are addressed by model learning and prediction for which we apply
Gaussian processes regression with iterated forecasting. In a number of
well-known continuous control tasks we examine the dynamics induced by
empowerment and include an application to exploration and online model
learning
A framework for the local information dynamics of distributed computation in complex systems
The nature of distributed computation has often been described in terms of
the component operations of universal computation: information storage,
transfer and modification. We review the first complete framework that
quantifies each of these individual information dynamics on a local scale
within a system, and describes the manner in which they interact to create
non-trivial computation where "the whole is greater than the sum of the parts".
We describe the application of the framework to cellular automata, a simple yet
powerful model of distributed computation. This is an important application,
because the framework is the first to provide quantitative evidence for several
important conjectures about distributed computation in cellular automata: that
blinkers embody information storage, particles are information transfer agents,
and particle collisions are information modification events. The framework is
also shown to contrast the computations conducted by several well-known
cellular automata, highlighting the importance of information coherence in
complex computation. The results reviewed here provide important quantitative
insights into the fundamental nature of distributed computation and the
dynamics of complex systems, as well as impetus for the framework to be applied
to the analysis and design of other systems.Comment: 44 pages, 8 figure
Protocol for a systematic review of the efficacy of fat grafting and platelet-rich plasma for wound healing
BACKGROUND: The use of fat grafting as a reconstructive surgical option is becoming much more common. Adipose-derived stem cells found in fat grafts are believed to facilitate wound healing via differentiation into fibroblasts and keratinocytes and the release of pro-healing growth factors. Several small studies have shown a positive effect of fat grafting in healing of wounds of a variety of aetiologies. When fat is combined with autologous platelet-rich plasma (PRP), there may be enhanced healing effects. This may be due to the pro-angiogenic and anti-inflammatory effects of PRP. We aim to synthesise the current evidence on combination fat grafting and PRP for wound healing to establish the efficacy of this technique.
METHODS/DESIGN: We will conduct a comprehensive literature search in the MEDLINE, EMBASE, CENTRAL, Science Citation Index, and Google Scholar databases (up to July 2017) to identify studies on fat grafting and PRP for wound healing. All primary studies and systematic reviews of these studies will be included, except case reports and case series with fewer than three patients, to evaluate the outcome of fat grafting and PRP on wound healing either on its own or when compared to other studies. Primary outcome measures are expected to be the proportion of total wounds healed at 12 weeks and the average wound healing time (time for 100% re-epithelialisation). Expected secondary outcome measures are the proportion of wounds achieving 50% wound healing, the type of wound benefitting most from fat grafting, economic evaluation, health-related quality of life, and adverse events. Subgroup analysis will be performed for the proportions of wounds healed based on wound aetiology.
DISCUSSION: This review will provide robust evidence of the efficacy of fat grafting and PRP for wound healing. This is an emerging technique, and this review is expected to guide clinical practice and ongoing research aimed at improving wound care.
SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42016049881
Transformation Pathways of Silica under High Pressure
Concurrent molecular dynamics simulations and ab initio calculations show
that densification of silica under pressure follows a ubiquitous two-stage
mechanism. First, anions form a close-packed sub-lattice, governed by the
strong repulsion between them. Next, cations redistribute onto the interstices.
In cristobalite silica, the first stage is manifest by the formation of a
metastable phase, which was observed experimentally a decade ago, but never
indexed due to ambiguous diffraction patterns. Our simulations conclusively
reveal its structure and its role in the densification of silica.Comment: 14 pages, 4 figure
Common Variants at 10 Genomic Loci Influence Hemoglobin A(1C) Levels via Glycemic and Nonglycemic Pathways
OBJECTIVE Glycated hemoglobin (HbA1c), used to monitor and diagnose diabetes, is influenced by average glycemia over a 2- to 3-month period. Genetic factors affecting expression, turnover, and abnormal glycation of hemoglobin could also be associated with increased levels of HbA1c. We aimed to identify such genetic factors and investigate the extent to which they influence diabetes classification based on HbA1c levels.
RESEARCH DESIGN AND METHODS We studied associations with HbA1c in up to 46,368 nondiabetic adults of European descent from 23 genome-wide association studies (GWAS) and 8 cohorts with de novo genotyped single nucleotide polymorphisms (SNPs). We combined studies using inverse-variance meta-analysis and tested mediation by glycemia using conditional analyses. We estimated the global effect of HbA1c loci using a multilocus risk score, and used net reclassification to estimate genetic effects on diabetes screening.
RESULTS Ten loci reached genome-wide significant association with HbA1c, including six new loci near FN3K (lead SNP/P value, rs1046896/P = 1.6 × 10−26), HFE (rs1800562/P = 2.6 × 10−20), TMPRSS6 (rs855791/P = 2.7 × 10−14), ANK1 (rs4737009/P = 6.1 × 10−12), SPTA1 (rs2779116/P = 2.8 × 10−9) and ATP11A/TUBGCP3 (rs7998202/P = 5.2 × 10−9), and four known HbA1c loci: HK1 (rs16926246/P = 3.1 × 10−54), MTNR1B (rs1387153/P = 4.0 × 10−11), GCK (rs1799884/P = 1.5 × 10−20) and G6PC2/ABCB11 (rs552976/P = 8.2 × 10−18). We show that associations with HbA1c are partly a function of hyperglycemia associated with 3 of the 10 loci (GCK, G6PC2 and MTNR1B). The seven nonglycemic loci accounted for a 0.19 (% HbA1c) difference between the extreme 10% tails of the risk score, and would reclassify ∼2% of a general white population screened for diabetes with HbA1c.
CONCLUSIONS GWAS identified 10 genetic loci reproducibly associated with HbA1c. Six are novel and seven map to loci where rarer variants cause hereditary anemias and iron storage disorders. Common variants at these loci likely influence HbA1c levels via erythrocyte biology, and confer a small but detectable reclassification of diabetes diagnosis by HbA1c
- …
