11 research outputs found

    The Scalar Field Kernel in Cosmological Spaces

    Full text link
    We construct the quantum mechanical evolution operator in the Functional Schrodinger picture - the kernel - for a scalar field in spatially homogeneous FLRW spacetimes when the field is a) free and b) coupled to a spacetime dependent source term. The essential element in the construction is the causal propagator, linked to the commutator of two Heisenberg picture scalar fields. We show that the kernels can be expressed solely in terms of the causal propagator and derivatives of the causal propagator. Furthermore, we show that our kernel reveals the standard light cone structure in FLRW spacetimes. We finally apply the result to Minkowski spacetime, to de Sitter spacetime and calculate the forward time evolution of the vacuum in a general FLRW spacetime.Comment: 13 pages, 1 figur

    Classical approximation to quantum cosmological correlations

    Full text link
    We investigate up to which order quantum effects can be neglected in calculating cosmological correlation functions after horizon exit. As a toy model, we study Ï•3\phi^3 theory on a de Sitter background for a massless minimally coupled scalar field Ï•\phi. We find that for tree level and one loop contributions in the quantum theory, a good classical approximation can be constructed, but for higher loop corrections this is in general not expected to be possible. The reason is that loop corrections get non-negligible contributions from loop momenta with magnitude up to the Hubble scale H, at which scale classical physics is not expected to be a good approximation to the quantum theory. An explicit calculation of the one loop correction to the two point function, supports the argument that contributions from loop momenta of scale HH are not negligible. Generalization of the arguments for the toy model to derivative interactions and the curvature perturbation leads to the conclusion that the leading orders of non-Gaussian effects generated after horizon exit, can be approximated quite well by classical methods. Furthermore we compare with a theorem by Weinberg. We find that growing loop corrections after horizon exit are not excluded, even in single field inflation.Comment: 44 pages, 1 figure; v2: corrected errors, added references, conclusions unchanged; v3: added section in which we compare with stochastic approach; this version matches published versio

    One-loop corrections to a scalar field during inflation

    Full text link
    The leading quantum correction to the power spectrum of a gravitationally-coupled light scalar field is calculated, assuming that it is generated during a phase of single-field, slow-roll inflation.Comment: 33 pages, uses feynmp.sty and ioplatex journal style. v2: matches version published in JCAP. v3: corrects sign error in Eq. (58). Corrects final coefficient of the logarithm in Eq. (105). Small corrections to discussion of divergences in 1-point function. Minor improvements to discussion of UV behaviour in Sec. 4.

    One-loop corrections to the curvature perturbation from inflation

    Full text link
    An estimate of the one-loop correction to the power spectrum of the primordial curvature perturbation is given, assuming it is generated during a phase of single-field, slow-roll inflation. The loop correction splits into two parts, which can be calculated separately: a purely quantum-mechanical contribution which is generated from the interference among quantized field modes around the time when they cross the horizon, and a classical contribution which comes from integrating the effect of field modes which have already passed far beyond the horizon. The loop correction contains logarithms which may invalidate the use of naive perturbation theory for cosmic microwave background (CMB) predictions when the scale associated with the CMB is exponentially different from the scale at which the fundamental theory which governs inflation is formulated.Comment: 28 pages, uses feynmp.sty and ioplatex journal style. v2: supersedes version published in JCAP. Some corrections and refinements to the discussion and conclusions. v3: Corrects misidentification of quantum correction with an IR effect. Improvements to the discussio

    Stochastic Inflation Revisited: Non-Slow Roll Statistics and DBI Inflation

    Full text link
    Stochastic inflation describes the global structure of the inflationary universe by modeling the super-Hubble dynamics as a system of matter fields coupled to gravity where the sub-Hubble field fluctuations induce a stochastic force into the equations of motion. The super-Hubble dynamics are ultralocal, allowing us to neglect spatial derivatives and treat each Hubble patch as a separate universe. This provides a natural framework in which to discuss probabilities on the space of solutions and initial conditions. In this article we derive an evolution equation for this probability for an arbitrary class of matter systems, including DBI and k-inflationary models, and discover equilibrium solutions that satisfy detailed balance. Our results are more general than those derived assuming slow roll or a quasi-de Sitter geometry, and so are directly applicable to models that do not satisfy the usual slow roll conditions. We discuss in general terms the conditions for eternal inflation to set in, and we give explicit numerical solutions of highly stochastic, quasi-stationary trajectories in the relativistic DBI regime. Finally, we show that the probability for stochastic/thermal tunneling can be significantly enhanced relative to the Hawking-Moss instanton result due to relativistic DBI effects.Comment: 38 pages, 2 figures. v3: minor revisions; version accepted into JCA

    Gauge-invariant quantum gravitational corrections to correlation functions

    Get PDF
    A recent proposal for gauge-invariant observables in inflation [R. Brunetti et al., JHEP 1608 (2016) 032] is examined. We give a generalisation of their construction to general background spacetimes. In flat space, we calculate one-loop graviton corrections to a scalar two-point function in a general gauge for the graviton. We explicitely show how the gauge-dependent terms cancel between the usual self-energy contributions and the additional corrections inherent in these observables. The one-loop corrections have the expected functional form, contrary to another recently studied proposal for gauge-invariant observables [M. B. Fröb, Class. Quant. Grav. 35 (2018) 035005] where this is not the case. Furthermore, we determine the one-loop graviton corrections to the four-point coupling of the gauge-invariant scalar field, and the corresponding running of the coupling constant induced by graviton loops. Interestingly, the β function is negative for all values of the non-minimal coupling of the scalar field to curvature
    corecore