5 research outputs found

    Fermionic vacuum densities in higher-dimensional de Sitter spacetime

    Full text link
    Fermionic condensate and the vacuum expectation values of the energy-momentum tensor are investigated for twisted and untwisted massive spinor fields in higher-dimensional de Sitter spacetime with toroidally compactified spatial dimensions. The expectation values are presented in the form of the sum of corresponding quantities in the uncompactified de Sitter spacetime and the parts induced by non-trivial topology. The latter are finite and the renormalization is needed for the first parts only. Closed formulae are derived for the renormalized fermionic vacuum densities in uncompactified odd-dimensional de Sitter spacetimes. It is shown that, unlike to the case of 4-dimensional spacetime, for large values of the mass, these densities are suppressed exponentially. Asymptotic behavior of the topological parts in the expectation values is investigated in the early and late stages of the cosmological expansion. When the comoving lengths of compactified dimensions are much smaller than the de Sitter curvature radius, to the leading order the topological parts coincide with the corresponding quantities for a massless fermionic field and are conformally related to the corresponding flat spacetime results. In this limit the topological parts dominate the uncompactified de Sitter part and the back-reaction effects should be taken into account. In the opposite limit, for a massive field the asymptotic behavior of the topological parts is damping oscillatory.Comment: 19 pages, 4 figures, cosmological applications are adde

    Categorizing Different Approaches to the Cosmological Constant Problem

    Full text link
    We have found that proposals addressing the old cosmological constant problem come in various categories. The aim of this paper is to identify as many different, credible mechanisms as possible and to provide them with a code for future reference. We find that they all can be classified into five different schemes of which we indicate the advantages and drawbacks. Besides, we add a new approach based on a symmetry principle mapping real to imaginary spacetime.Comment: updated version, accepted for publicatio

    Pan-cancer analysis of whole genomes

    No full text
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale. Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter; identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation; analyses timings and patterns of tumour evolution; describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity; and evaluates a range of more-specialized features of cancer genomes
    corecore