287 research outputs found

    Graviton Loop Corrections to Vacuum Polarization in de Sitter in a General Covariant Gauge

    Full text link
    We evaluate the one-graviton loop contribution to the vacuum polarization on de Sitter background in a 1-parameter family of exact, de Sitter invariant gauges. Our result is computed using dimensional regularization and fully renormalized with BPHZ counterterms, which must include a noninvariant owing to the time-ordered interactions. Because the graviton propagator engenders a physical breaking of de Sitter invariance two structure functions are needed to express the result. In addition to its relevance for the gauge issue this is the first time a covariant gauge graviton propagator has been used to compute a noncoincident loop. A number of identities are derived which should facilitate further graviton loop computations.Comment: 61 pages, 1 figure, 11 tables, version 2 (63 pages) revised for publication in CQ

    One loop graviton corrections to dynamical photons in de Sitter

    Full text link
    We employ a recent, general gauge computation of the one loop graviton contribution to the vacuum polarization on de Sitter to solve for one loop corrections to the photon mode function. The vacuum polarization takes the form of a gauge independent, spin 2 contribution and a gauge dependent, spin 0 contribution. We show that the leading secular corrections derive entirely from the spin 2 contribution.Comment: 41 pages, no figures, uses LaTeX2

    Single Graviton Loop Contribution to the Self-Mass of a Massless, Conformally Coupled Scalar on de Sitter Background

    Full text link
    We use a simplified formalism to re-compute the single graviton loop contribution to the self-mass of a massless, conformally coupled scalar on de Sitter background which was originally made by Boran, Kahya and Park [1-3]. Our result resolves the problem with the flat space correspondence limit that was pointed out by Fr\"ob [4]. We discuss how this computation will be used in a long-term project to purge the linearized effective field equation of gauge dependence.Comment: 26 pages, 1 figure, uses LaTeX 2e. Version 2 revised slightly for publicatio

    Explaining Large Electromagnetic Logarithms from Loops of Inflationary Gravitons

    Full text link
    Recent progress on nonlinear sigma models on de Sitter background has permitted the resummation of large inflationary logarithms by combining a variant of Starobinsky's stochastic formalism with a variant of the renormalization group. We reconsider single graviton loop corrections to the photon wave function, and to the Coulomb potential, in light of these developments. Neither of the two 1-loop results have a stochastic explanation, however, the flow of a curvature-dependent field strength renormalization explains their factors of ln(a)\ln(a). We speculate that the factor of ln(Hr)\ln(Hr) in the Coulomb potential should not be considered as a leading logarithm effect.Comment: 22 pages, uses LaTeX2e, slightly revised for publicatio

    VennDiagramWeb: a web application for the generation of highly customizable Venn and Euler diagrams.

    Get PDF
    BackgroundVisualization of data generated by high-throughput, high-dimensionality experiments is rapidly becoming a rate-limiting step in computational biology. There is an ongoing need to quickly develop high-quality visualizations that can be easily customized or incorporated into automated pipelines. This often requires an interface for manual plot modification, rapid cycles of tweaking visualization parameters, and the generation of graphics code. To facilitate this process for the generation of highly-customizable, high-resolution Venn and Euler diagrams, we introduce VennDiagramWeb: a web application for the widely used VennDiagram R package. VennDiagramWeb is hosted at http://venndiagram.res.oicr.on.ca/ .ResultsVennDiagramWeb allows real-time modification of Venn and Euler diagrams, with parameter setting through a web interface and immediate visualization of results. It allows customization of essentially all aspects of figures, but also supports integration into computational pipelines via download of R code. Users can upload data and download figures in a range of formats, and there is exhaustive support documentation.ConclusionsVennDiagramWeb allows the easy creation of Venn and Euler diagrams for computational biologists, and indeed many other fields. Its ability to support real-time graphics changes that are linked to downloadable code that can be integrated into automated pipelines will greatly facilitate the improved visualization of complex datasets. For application support please contact [email protected]

    Graviton Propagator in a 2-Parameter Family of de Sitter Breaking Gauges

    Full text link
    We formulate the graviton propagator on de Sitter background in a 2-parameter family of simple gauges which break de Sitter invariance. Explicit results are derived for the first order perturbations in each parameter. These results should be useful in computations to check for gauge dependence of graviton loop corrections.Comment: 23 pages, 1 table, uses LaTeX2e, version 2 slightly revised for publicatio

    Breaking of scaling symmetry by massless scalar on de Sitter

    Full text link
    We study the response of a classical massless minimally coupled scalar to a static point scalar charge on de Sitter. By considering explicit solutions of the problem we conclude that -- even though the dynamics formally admits dilatation (scaling) symmetry -- the physical scalar field profile necessarily breaks the symmetry. This is an instance of symmetry breaking in classical physics due to large infrared effects. The gravitational backreaction, on the other hand, does respect dilatation symmetry, making this an example of symmetry non-inheritance phenomenon.Comment: 10 page

    One-loop Graviton Corrections to Conformal Scalars on a de Sitter Background

    Full text link
    We exploit a recent computation of one graviton loop corrections to the self-mass [1] to quantum-correct the field equation for a massless, conformally coupled scalar on a de Sitter background. With the obvious choice for the finite part of the R2ϕ2R^2 \phi^2 counterterm, we find that neither plane wave mode functions nor the response to a point source acquires large infrared logarithms. However, we do find a decaying logarithmic correction to the mode function and a short distance logarithmic running of the potential in addition to the power-law effect inherited from flat space.Comment: 25 pages, 2 figures; published versio

    Vacuum properties of nonsymmetric gravity in de Sitter space

    Get PDF
    We consider quantum effects of a massive antisymmetric tensor field on the dynamics of de Sitter space-time. Our starting point is the most general, stable, linearized Lagrangian arising in nonsymmetric gravitational theories (NGTs), where part of the antisymmetric field mass is generated by the cosmological term. We construct a renormalization group (RG) improved effective action by integrating out one loop vacuum fluctuations of the antisymmetric tensor field and show that, in the limit when the RG scale goes to zero, the Hubble parameter -- and thus the effective cosmological constant -- relaxes rapidly to zero. We thus conclude that quantum loop effects in de Sitter space can dramatically change the infrared sector of the on-shell gravity, making the expansion rate insensitive to the original (bare) cosmological constant.Comment: 32 pages, 2 eps figure

    Classical approximation to quantum cosmological correlations

    Full text link
    We investigate up to which order quantum effects can be neglected in calculating cosmological correlation functions after horizon exit. As a toy model, we study ϕ3\phi^3 theory on a de Sitter background for a massless minimally coupled scalar field ϕ\phi. We find that for tree level and one loop contributions in the quantum theory, a good classical approximation can be constructed, but for higher loop corrections this is in general not expected to be possible. The reason is that loop corrections get non-negligible contributions from loop momenta with magnitude up to the Hubble scale H, at which scale classical physics is not expected to be a good approximation to the quantum theory. An explicit calculation of the one loop correction to the two point function, supports the argument that contributions from loop momenta of scale HH are not negligible. Generalization of the arguments for the toy model to derivative interactions and the curvature perturbation leads to the conclusion that the leading orders of non-Gaussian effects generated after horizon exit, can be approximated quite well by classical methods. Furthermore we compare with a theorem by Weinberg. We find that growing loop corrections after horizon exit are not excluded, even in single field inflation.Comment: 44 pages, 1 figure; v2: corrected errors, added references, conclusions unchanged; v3: added section in which we compare with stochastic approach; this version matches published versio
    corecore