1,459 research outputs found

    Formation of Compressed Flat Electron Beams with High Transverse-Emittance Ratios

    Full text link
    Flat beams -- beams with asymmetric transverse emittances -- have important applications in novel light-source concepts, advanced-acceleration schemes and could possibly alleviate the need for damping rings in lepton colliders. Over the last decade, a flat-beam-generation technique based on the conversion of an angular-momentum-dominated beam was proposed and experimentally tested. In this paper we explore the production of compressed flat beams. We especially investigate and optimize the flat-beam transformation for beams with substantial fractional energy spread. We use as a simulation example the photoinjector of the Fermilab's Advanced Superconducting Test Accelerator (ASTA). The optimizations of the flat beam generation and compression at ASTA were done via start-to-end numerical simulations for bunch charges of 3.2 nC, 1.0 nC and 20 pC at ~37 MeV. The optimized emittances of flat beams with different bunch charges were found to be 0.25 {\mu}m (emittance ratio is ~400), 0.13 {\mu}m, 15 nm before compression, and 0.41 {\mu}m, 0.20 {\mu}m, 16 nm after full compression, respectively with peak currents as high as 5.5 kA for a 3.2-nC flat beam. These parameters are consistent with requirements needed to excite wakefields in asymmetric dielectric-lined waveguides or produce significant photon flux using small-gap micro-undulators.Comment: 17

    Isobaric multiplet mass equation in the A=31A=31 T=3/2T = 3/2 quartets

    Full text link
    The observed mass excesses of analog nuclear states with the same mass number AA and isospin TT can be used to test the isobaric multiplet mass equation (IMME), which has, in most cases, been validated to a high degree of precision. A recent measurement [Kankainen et al., Phys. Rev. C 93 041304(R) (2016)] of the ground-state mass of 31^{31}Cl led to a substantial breakdown of the IMME for the lowest A=31,T=3/2A = 31, T = 3/2 quartet. The second-lowest A=31,T=3/2A = 31, T = 3/2 quartet is not complete, due to uncertainties associated with the identity of the 31^{31}S member state. Using a fast 31^{31}Cl beam implanted into a plastic scintillator and a high-purity Ge γ\gamma-ray detection array, γ\gamma rays from the 31^{31}Cl(βγ)(\beta\gamma)31^{31}S sequence were measured. Shell-model calculations using USDB and the recently-developed USDE interactions were performed for comparison. Isospin mixing between the 31^{31}S isobaric analog state (IAS) at 6279.0(6) keV and a nearby state at 6390.2(7) keV was observed. The second T=3/2T = 3/2 state in 31^{31}S was observed at Ex=7050.0(8)E_x = 7050.0(8) keV. Isospin mixing in 31^{31}S does not by itself explain the IMME breakdown in the lowest quartet, but it likely points to similar isospin mixing in the mirror nucleus 31^{31}P, which would result in a perturbation of the 31^{31}P IAS energy. USDB and USDE calculations both predict candidate 31^{31}P states responsible for the mixing in the energy region slightly above Ex=6400E_x = 6400 keV. The second quartet has been completed thanks to the identification of the second 31^{31}S T=3/2T = 3/2 state, and the IMME is validated in this quartet

    Beta-delayed gamma decay of 26P: Possible evidence of a proton halo

    Full text link
    Background: Measurements of β\beta decay provide important nuclear structure information that can be used to probe isospin asymmetries and inform nuclear astrophysics studies. Purpose: To measure the β\beta-delayed γ\gamma decay of 26^{26}P and compare the results with previous experimental results and shell-model calculations. Method: A 26^{26}P fast beam produced using nuclear fragmentation was implanted into a planar germanium detector. Its β\beta-delayed γ\gamma-ray emission was measured with an array of 16 high-purity germanium detectors. Positrons emitted in the decay were detected in coincidence to reduce the background. Results: The absolute intensities of 26^{26}P β\beta-delayed γ\gamma-rays were determined. A total of six new β\beta-decay branches and 15 new γ\gamma-ray lines have been observed for the first time in 26^{26}P β\beta-decay. A complete β\beta-decay scheme was built for the allowed transitions to bound excited states of 26^{26}Si. ftft values and Gamow-Teller strengths were also determined for these transitions and compared with shell model calculations and the mirror β\beta-decay of 26^{26}Na, revealing significant mirror asymmetries. Conclusions: A very good agreement with theoretical predictions based on the USDB shell model is observed. The significant mirror asymmetry observed for the transition to the first excited state (δ=51(10)%\delta=51(10)\%) may be evidence for a proton halo in 26^{26}P.Comment: 15 pages, 10 figures, 7 table

    Ноосферная проблематика в философии Тейяра де Шардена

    Get PDF
    Современная экологическая ситуация остается одной их актуальных. Она требует всестороннего, комплексного анализа, в том числе и философского осмысления. В XX в. сформировались несколько концептуальных представлений, получивших название "ноосферных". Одним из теоретиков ноосферной концепции был Тейяр де Шарден. Исследование его подхода дает основание избежать ошибок и сформировать научное последовательное представление во взаимоотношениях между Природой и Обществом

    Enhanced low-energy γ\gamma-decay strength of 70^{70}Ni and its robustness within the shell model

    Full text link
    Neutron-capture reactions on very neutron-rich nuclei are essential for heavy-element nucleosynthesis through the rapid neutron-capture process, now shown to take place in neutron-star merger events. For these exotic nuclei, radiative neutron capture is extremely sensitive to their γ\gamma-emission probability at very low γ\gamma energies. In this work, we present measurements of the γ\gamma-decay strength of 70^{70}Ni over the wide range 1.3Eγ81.3 \leq E_{\gamma} \leq 8 MeV. A significant enhancement is found in the γ\gamma-decay strength for transitions with Eγ<3E_\gamma < 3 MeV. At present, this is the most neutron-rich nucleus displaying this feature, proving that this phenomenon is not restricted to stable nuclei. We have performed E1E1-strength calculations within the quasiparticle time-blocking approximation, which describe our data above Eγ5E_\gamma \simeq 5 MeV very well. Moreover, large-scale shell-model calculations indicate an M1M1 nature of the low-energy γ\gamma strength. This turns out to be remarkably robust with respect to the choice of interaction, truncation and model space, and we predict its presence in the whole isotopic chain, in particular the neutron-rich 72,74,76Ni^{72,74,76}\mathrm{Ni}.Comment: 9 pages, 9 figure

    Study of the island morphology at the early stages of Fe/Mo(110) MBE growth

    Full text link
    We present theoretical study of morphology of Fe islands grown at Mo(110) surface in sub-monolayer MBE mode. We utilize atomistic SOS model with bond counting, and interactions of Fe adatom up to third nearest neighbors. We performed KMC simulations for different values of adatom interactions and varying temperatures. We have found that, while for the low temperature islands are fat fractals, for the temperature 500K islands have faceted rhombic-like shape. For the higher temperature, islands acquire a rounded shape. In order to evaluated qualitatively morphological changes, we measured averaged aspect ration of islands. We calculated dependence of the average aspect ratio on the temperature, and on the strength of interactions of an adatom with neighbors.Comment: 6 pages, 6 figures. Proceedings of 11-th Symposium on Surface Physics, Prague 200
    corecore