1,528 research outputs found
On birational involutions of
Let be a rationally connected three-dimensional algebraic variety and let
be an element of order two in the group of its birational selfmaps.
Suppose that there exists a non-uniruled divisorial component of the
-fixed point locus. Using the equivariant minimal model program we give a
rough classification of such elements.Comment: 24 pages, late
Uncertainty relations in curved spaces
Uncertainty relations for particle motion in curved spaces are discussed. The
relations are shown to be topologically invariant. New coordinate system on a
sphere appropriate to the problem is proposed. The case of a sphere is
considered in details. The investigation can be of interest for string and
brane theory, solid state physics (quantum wires) and quantum optics.Comment: published version; phase space structure discussion adde
Impact of the strong electromagnetic field on the QCD effective potential for homogeneous Abelian gluon field configurations
The one-loop quark contribution to the QCD effective potential for the
homogeneous Abelian gluon field in the presence of external strong
electromagnetic field is evaluated. The structure of extrema of the potential
as a function of the angles between chromoelectric, chromomagnetic and
electromagnetic fields is analyzed. In this setup, the electromagnetic field is
considered as an external one while the gluon field represents domain
structured nonperturbative gluon configurations related to the QCD vacuum in
the confinement phase. Two particularly interesting gluon configurations,
(anti-)self-dual and crossed orthogonal chromomagnetic and chromoelectric
fields, are discussed specifically. Within this simplified framework it is
shown that the strong electromagnetic fields can play a catalysing role for a
deconfinement transition. At the qualitative level, the present consideration
can be seen as a highly simplified study of an impact of the electromagnetic
fields generated in relativistic heavy ion collisions on the strongly
interacting hadronic matter.Comment: 9 pages, 4 figure
Measurement of mechanical losses in the carbon nanotube black coating of silicon wafers
The successful detection of gravitational waves from astrophysical sources carried out by the laser interferometric detectors LIGO and Virgo have stimulated scientists to develop a new generation of more sensitive gravitational wave detectors. In the proposed upgrade called LIGO Voyager, silicon test masses will be cooled to cryogenic temperatures. To provide heat removal from the test masses when they absorb the laser light one can increase their thermal emissivity using a special black coating. We have studied mechanical losses in a carbon nanotube black coating deposited on silicon wafers. The additional thermal noise associated with mechanical loss in this coating was calculated using a value of the product of the coating Young's modulus and the coating mechanical loss angle determined from the measurements. It was found that at temperatures of about 123 K, the additional thermal noise of the LIGO Voyager test mass caused by the carbon nanotube black coating deposited on its barrel is less than the noise associated with the Acktar Black coating and is 20 times less than the noise due to the optical high reflective (HR) coating of the test mass
Probing the ground state in gauge theories
We consider two very different models of the flux tube linking two heavy
quarks: a string linking the matter fields and a Coulombic description of two
separately gauge invariant charges. We compare how close they are to the
unknown true ground state in compact U(1) and the SU(2) Higgs model.
Simulations in compact U(1) show that the string description is better in the
confined phase but the Coulombic description is best in the deconfined phase;
the last result is shown to agree with analytical calculations. Surprisingly in
the non-abelian theory the Coulombic description is better in both the Higgs
and confined phases. This indicates a significant difference in the width of
the flux tubes in the two theories.Comment: 13 pages, 10 .eps figures. V2: conclusions extende
Nonlinear interaction of light with Bose-Einstein condensate: new methods to generate subpoissonian light
We consider -type model of the Bose-Einstein condensate of sodium
atoms interacting with the light. Coefficients of the Kerr-nonlinearity in the
condensate can achieve large and negative values providing the possibility for
effective control of group velocity and dispersion of the probe pulse. We find
a regime when the observation of the "slow" and "fast" light propagating
without absorption becomes achievable due to strong nonlinearity. An effective
two-level quantum model of the system is derived and studied based on the su(2)
polynomial deformation approach. We propose an efficient way for generation of
subpoissonian fields in the Bose-Einstein condensate at time-scales much
shorter than the characteristic decay time in the system. We show that the
quantum properties of the probe pulse can be controlled in BEC by the classical
coupling field.Comment: 13 pages, 6 figures, 1 tabl
Galactic Binary Gravitational Wave Noise within LISA Frequency Band
Gravitational wave noise associated with unresolved binary stars in the
Galaxy is studied with the special aim of determining the upper frequency at
which it stops to contribute at the rms noise level of the proposed space-born
interferometer (LISA). The upper limit to this background is derived from the
statistics of SN Ia explosions, part of which can be triggered by binary white
dwarf coalescences. The upper limiting frequency at which binary stochastic
noise crosses LISA rms sensitivity is found to lie within the range 0.03-0.07
Hz, depending on the galactic binary white dwarf coalescence rate. To be
reliably detectable by LISA, the energy density of relic cosmological
background per logarithmic frequency interval should be
Omega_{GW}h_{100}^2>10^{-8} at f>0.03 Hz.Comment: 16 pages with 1 eps figure, aasms4.sty, to appear in the ApJ vol. 494
February 20, 1998 issu
Charges in Gauge Theories
In this article we investigate charged particles in gauge theories. After
reviewing the physical and theoretical problems, a method to construct charged
particles is presented. Explicit solutions are found in the Abelian theory and
a physical interpretation is given. These solutions and our interpretation of
these variables as the true degrees of freedom for charged particles, are then
tested in the perturbative domain and are demonstrated to yield infra-red
finite, on-shell Green's functions at all orders of perturbation theory. The
extension to collinear divergences is studied and it is shown that this method
applies to the case of massless charged particles. The application of these
constructions to the charged sectors of the standard model is reviewed and we
conclude with a discussion of the successes achieved so far in this programme
and a list of open questions.Comment: 47 pages, LaTeX, 14 figures, uses feynmp, necessary Metapost files
included. Review to appear in Pramana, Journal of Physics. Minor LaTeX change
to make page numbers visible on "Letter" paper forma
Broad-band gravitational-wave pulses from binary neutron stars in eccentric orbits
Maximum gravitational wave emission from binary stars in eccentric orbits
occurs near the periastron passage. We show that for a stationary distribution
of binary neutron stars in the Galaxy, several high-eccentricity systems with
orbital periods in the range from tens of minutes to several days should exist
that emit broad gravitational-wave pulses in the frequency range 1-100 mHz. The
space interferometer LISA could register the pulsed signal from these system at
a signal-to-noise ratio level in the frequency range Hz during one-year observational time. Some detection
algorithms for such a signal are discussed.Comment: 17 pages, LATEX, 3 figures, Astronomy Letters, 2002, in press; typos
corrected, refference adde
- âŠ