307 research outputs found

    C++ programming language for an abstract massively parallel SIMD architecture

    Full text link
    The aim of this work is to define and implement an extended C++ language to support the SIMD programming paradigm. The C++ programming language has been extended to express all the potentiality of an abstract SIMD machine consisting of a central Control Processor and a N-dimensional toroidal array of Numeric Processors. Very few extensions have been added to the standard C++ with the goal of minimising the effort for the programmer in learning a new language and to keep very high the performance of the compiled code. The proposed language has been implemented as a porting of the GNU C++ Compiler on a SIMD supercomputer.Comment: 10 page

    Independent high-purity photons created in domain-engineered crystals

    Full text link
    Advanced photonic quantum technology relies on multi-photon interference which requires bright sources of high-purity single photons. Here, we implement a novel domain-engineering technique for tailoring the nonlinearity of a parametric down-conversion crystal. We create pairs of independently-heralded telecom-wavelength photons and achieve high heralding, brightness and spectral purities without filtering.Comment: 8 pages, 5 figures Imprecise comparison with the experimental results in [28] has been remove

    Electrical, mechanical and electromechanical properties of graphene-thermoset polymer composites produced using acetone-DMF solvents

    Get PDF
    Recently, graphene-polymer composites gained a central role in advanced stress and strain sensing. A fundamental step in the production of epoxy-composites filled with graphene nanoplatelets (GNPs) consists in the exfoliation and dispersion of expanded graphite in a proper solvent, in the mixing of the resulting GNP suspension with the polymer matrix, and in the final removal of the solvent from the composite before curing through evaporation. The effects of traces of residual solvent on polymer curing process are usually overlooked, even if it has been found that even a small amount of residual solvent can affect the mechanical properties of the final composite. In this paper, we show that residual traces of N,N′-Dimethylformamide (DMF) in vinylester epoxy composites can induce relevant variations of the electrical, mechanical and electromechanical properties of the cured GNP-composite. To this purpose, a complete analysis of the morphological and structural characteristics of the composite samples produced using different solvent mixtures (combining acetone and DMF) is performed. Moreover, electrical, mechanical and electromechanical properties of the produced composites are assessed. In particular, the effect on the piezoresistive response of the use of DMF in the solvent mixture is analyzed using an experimental strain dependent percolation law to fit the measured electromechanical data. It is shown that the composites realized using a higher amount of DMF are characterized by a higher electrical conductivity and by a strong reduction of Young’s Modulus

    Seismic Risk Assessment Tools Workshop

    Get PDF
    Held in the European Crisis Management Laboratory on 11-12 May 2017, the Workshop brought together on one side the developers of some of the most widely used modern seismic risk assessment tools and on the other a number of Civil Protection authorities from countries of the European Civil Protection Mechanism. The objective was to demonstrate the use and capabilities of the tools, explore the possible use in near-real-time impact assessment and promote their use in risk planning and disaster response. The systems presented in the workshop demonstrated a very high sophistication and increased flexibility in accepting data from a large number of sources and formats. Systems that were initially developed on a national scale can now work on a global level with little effort and the use of global-scale exposure data is almost seamless. An urgent need for more accurate exposure data being openly available was identified, as well as the need of proper use of the fragility curves. Inter-system collaboration and interoperability in some cases to increase ease of use was greatly appreciated and encouraged. All systems participated in a real-time simulation exercise on previously unknown seismic data provided by the JRC; some additional automation might be in order, but in general all systems demostrated a capacity to produce results on a near-real-time basis. The demonstrations were unanimously welcomed as very useful by the participating Civil Protection Authorities, most of which are either using a locally-developed system of moving towards using one of those presented in the workshop.JRC.E.1-Disaster Risk Managemen

    Electromagnetic and electromechanical applications of graphene-based materials

    Get PDF
    This volume contains the extended abstracts of the contributions presented at the workshop Nanoscale Excitations in Emergent Materials (NEEM 2015) held in Rome from 12 to 14 October 2015, an event organized and supported in the framework of the Bilateral Cooperation Agreement between Italy and India within the project of major relevance "Investigating local structure and magnetism of cobalt nano-structures", funded by the Italian Ministry of Foreign Affairs and the Department of Science and Technology in India

    On the Selection of Common Factors for Macroeconomic Forecasting

    Get PDF
    We address the problem of selecting the common factors that are relevant for forecasting macroeconomic variables. In economic forecasting using diffusion indexes the factors are ordered, according to their importance, in terms of relative variability, and are the same for each variable to predict, i.e. the process of selecting the factors is not supervised by the predictand. We propose a simple and operational supervised method, based on selecting the factors on the basis of their significance in the regression of the predictand on the predictors. Given a potentially large number of predictors, we consider linear transformations obtained by principal components analysis. The orthogonality of the components implies that the standard t-statistics for the inclusion of a particular component are independent, and thus applying a selection procedure that takes into account the multiplicity of the hypotheses tests is both correct and computationally feasible. We focus on three main multiple testing procedures: Holm’s sequential method, controlling the family wise error rate, the Benjamini-Hochberg method, controlling the false discovery rate, and a procedure for incorporating prior information on the ordering of the components, based on weighting the p-values according to the eigenvalues associated to the components. We compare the empirical performances of these methods with the classical diffusion index (DI) approach proposed by Stock and Watson, conducting a pseudo-real time forecasting exercise, assessing the predictions of 8 macroeconomic variables using factors extracted from an U.S. dataset consisting of 121 quarterly time series. The overall conclusion is that nature is tricky, but essentially benign: the information that is relevant for prediction is effectively condensed by the first few factors. However, variable selection, leading to exclude some of the low order principal components, can lead to a sizable improvement in forecasting in specific cases. Only in one instance, real personal income, we were able to detect a significant contribution from high order components

    Tropical Cyclone ENAWO - Post-Event Report

    Get PDF
    Tropical Cyclones (TCs) are among the most damaging events. They affect the population with three dangerous effects: strong wind, heavy rain and storm surge. JRC has developed a system used in Global Disaster Alert and Coordination System (GDACS) that includes the analysis of all these effects for every TC occurring worldwide to assess the overall impact. This document is the first POST-EVENT Report, which is a new type of report produced by the JRC after a major event aimed to report the real status of the impact that occurred, based on media reports, onsite analyses, and satellite images. The event analysed in this report is the intense TC ENAWO, that made landfall in north-eastern Madagascar on 7 March 2017, killing more than 80 people and causing extensive damage, especially in Sava and Analanjirofo regions. Authorities issued a "declaration of national emergency" and formally requested international assistance on 14 March. GDACS issued the first RED alert (for high winds) in Madagascar on 3 March. The Emergency Response Coordination Centre (ERCC) of DG ECHO activated ARISTOTLE on 5 March and the Copernicus Emergency Management Service (EMS) on 7 March. The responses of the alert and information systems are analysed and the results are compared with the damage reported by national authorities and satellite images analysis. In order to improve the current early warning system and impact estimations, JRC is implementing a new method to evaluate the areas potentially most affected by a TC, using new datasets and classifications. The results are also included in the report.JRC.E.1-Disaster Risk Managemen

    Photoinduced Temperature Gradients in Sub-wavelength Plasmonic Structures: The Thermoplasmonics of Nanocones

    Full text link
    Plasmonic structures are renowned for their capability to efficiently convert light into heat at the nanoscale. However, despite the possibility to generate deep sub-wavelength electromagnetic hot spots, the formation of extremely localized thermal hot spots is an open challenge of research, simply because of the diffusive spread of heat along the whole metallic nanostructure. Here we tackle this challenge by exploiting single gold nanocones. We theoretically show how these structures can indeed realize extremely high temperature gradients within the metal, leading to deep sub-wavelength thermal hot spots, owing to their capability of concentrating light at the apex under resonant conditions even under continuous wave illumination. A three-dimensional Finite Element Method model is employed to study the electromagnetic field in the structure and subsequent thermoplasmonic behaviour, in terms of the three-dimensional temperature distribution. We show how the latter is affected by nanocone size, shape, and composition of the surrounding environment. Finally, we anticipate the use of photoinduced temperature gradients in nanocones for applications in optofluidics and thermoelectrics or for thermally induced nanofabrication

    Enhanced Multi-Qubit Phase Estimation in Noisy Environments by Local Encoding

    Full text link
    The first generation of multi-qubit quantum technologies will consist of noisy, intermediate-scale devices for which active error correction remains out of reach. To exploit such devices, it is thus imperative to use passive error protection that meets a careful trade-off between noise protection and resource overhead. Here, we experimentally demonstrate that single-qubit encoding can significantly enhance the robustness of entanglement and coherence of four-qubit graph states against local noise with a preferred direction. In particular, we explicitly show that local encoding provides a significant practical advantage for phase estimation in noisy environments. This demonstrates the efficacy of local unitary encoding under realistic conditions, with potential applications in multi-qubit quantum technologies for metrology, multi-partite secrecy and error correction.Comment: 7 figure
    • …
    corecore