12 research outputs found

    Crystal Structure of Human TWEAK in Complex with the Fab Fragment of a Neutralizing Antibody Reveals Insights into Receptor Binding.

    Get PDF
    The tumor necrosis factor-like weak inducer of apoptosis (TWEAK) is a multifunctional cytokine playing a key role in tissue regeneration and remodeling. Dysregulation of TWEAK signaling is involved in various pathological processes like autoimmune diseases and cancer. The unique interaction with its cognate receptor Fn14 makes both ligand and receptor promising targets for novel therapeutics. To gain insights into this important signaling pathway, we determined the structure of soluble human TWEAK in complex with the Fab fragment of an antibody selected for inhibition of receptor binding. In the crystallized complex TWEAK is bound by three Fab fragments of the neutralizing antibody. Homology modeling shows that Fab binding overlaps with the putative Fn14 binding site of TWEAK. Docking of the Fn14 cysteine rich domain (CRD) to that site generates a highly complementary interface with perfectly opposing charged and hydrophobic residues. Taken together the presented structure provides new insights into the biology of TWEAK and the TWEAK/Fn14 pathway, which will help to optimize the therapeutic strategy for treatment of related cancer types and autoimmune diseases

    Deciphering the Stepwise Binding Mode of HRG1β to HER3 by Surface Plasmon Resonance and Interaction Map

    No full text
    <div><p>For the development of efficient anti-cancer therapeutics against the HER receptor family it is indispensable to understand the mechanistic model of the HER receptor activation upon ligand binding. Due to its high complexity the binding mode of Heregulin 1 beta (HRG1β) with its receptor HER3 is so far not understood. Analysis of the interaction of HRG1β with surface immobilized HER3 extracellular domain by time-resolved Surface Plasmon Resonance (SPR) was so far not interpretable using any regular analysis method as the interaction was highly complex. Here, we show that Interaction Map (IM) made it possible to shed light on this interaction. IM allowed deciphering the rate limiting kinetic contributions from complex SPR sensorgrams and thereby enabling the extraction of discrete kinetic rate components from the apparently heterogeneous interactions. We could resolve details from the complex avidity-driven binding mode of HRG1β with HER3 by using a combination of SPR and IM data. Our findings contribute to the general understanding that a major conformational change of HER3 during its activation is induced by a complex sequential HRG1β docking mode.</p></div

    Deciphering the binding behavior of HRG1β to HER3, investigated by different SPR assay setups.

    No full text
    <p>To determine the interaction of HRG1β with HER3 in presence and absence of anti-HER3 antibody mAb208, four different SPR assay setups were designed. The descriptive symbols illustrate the corresponding assay setups. Arrows indicate injection of analytes (left column). Measured biomolecular interactions were evaluated using a regular Langmuir model (middle column) and where applicable using a two-state reaction model (right column) by Biacore Evaluation Software 2.0. The curve fittings are highlighted in red. The curve corresponding to the highest concentration is indicated in each sensorgram. Report points were used to additionally characterize the shape of the sensorgrams. They are indicated by asterisk: BL<sub>early</sub> (*) is the binding signal shortly before the end of the analyte injection. BL<sub>late</sub> (**) is the binding signal 100 seconds after the end of the injection. SL (***) is the stability late signal at the end of the dissociation phase. Three replicates of each concentration are shown in black in each sensorgram (n = 3). The third highest concentration of each assay was injected twice (n = 6). (A—C) Murine antibody mAb208 was captured by immobilized rabbit anti-mouse antibody on CM5 sensor chip surface. (A) Injection of HER3 (ECD3). (B) Injection of pre-incubated HER3/HRG1β. (C) Injection of HRG1β. (D) Biotinylated HER3-Avi (bi-ECD3) was captured on a streptavidin-coated CAP sensor chip. Subsequently, HRG1β was injected.</p

    Kinetic interaction parameters calculated by Interaction Map.

    No full text
    <p>Kinetic values of the four SPR assays shown in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0116870#pone.0116870.t001" target="_blank">table 1</a>, calculated by Interaction Map (TraceDrawer Software 1.6, Ridgeview Instruments AB). Listed are mean values of three replicates (±standard deviation).</p><p>Kinetic interaction parameters calculated by Interaction Map.</p

    Interaction of the antibody with TWEAK.

    No full text
    <p>A) Ribbon representation of one Fab fragment binding to one TWEAK protomer (orange:TWEAK, blue:light chain, green:heavy chain). B) Stereo representation of the epitope recognition with interacting residues as labeled stick model and important hydrogen bond interaction highlighted as dashed lines. The binding is mainly mediated by CDR loop 1 and 2 of the heavy chain interacting with residues of the loops connecting strands D/E and B’/B and residues of strand G. In addition Y93 of CDR3 of the light chain interacts with a main chain N and stacks with the guanidinium group of R130 of TWEAK. C) Interestingly not only canonical CDR loops are involved in TWEAK binding, but an additional hydrogen bond is formed between light chain R68 of a non CDR loop with D75 of a second subunit of the trimeric TWEAK complex (gray).</p

    Cross blocking assay.

    No full text
    1<p>The Molar Ratio (MR %) was calculated as the quotient of the secondary antibody binding signal to the primary antibody binding signal, both binding to the surface-presented TWEAK ligand.</p

    Model of the TWEAK – Fn14 receptor interaction.

    No full text
    <p>A) Side view of the TWEAK trimer showing the solvent accessible electrostatic surface potential (red −4 kT to blue +4 kT). The positively charged patch indicating the possible receptor binding site (dashed ellipse) is covered by the antibody selected for inhibiting TWEAK-Fn14 interaction (cartoon model of Hv in green and Lv in blue). B) Same view as in A with the antibody and TWEAK surface set transparence. After superposition of cytokine-receptor structures APRIL-BCMA (blue; PDB ID 1XU2), APRIL-TACI (brown; PDB ID 1XU1), TALL-BCMA (red; PDB ID 1OQD) and TALL-BAFFR (green; PDB ID 1OQE) the CRD of the receptors co-localize and mark the putative binding site of Fn14 on TWEAK (only the CRD of the receptors is shown as colored cartoon model). C) The NMR model of the Fn14 CRD (blue; PDB ID 2RPJ) is placed at the putative receptor binding site of TWEAK according to the complex structures shown in B. The basic patch is indicated with the dashed ellipse. Only one of the three receptors is shown. D) Stereo view of the modeled TWEAK-Fn14 CRD interface. Upon rigid body and positional refinement of the putative TWEAK-Fn14 CRD complex a dense hydrogen bond network is formed at the interface. The perfect complementarities of charged and hydrophobic patches, as well as the involvement of Fn14 side chains already shown to play an important role in TWEAK binding support this model.</p

    Structure of human TWEAK.

    No full text
    <p>A) Ribbon representations of the TWEAK trimer with one protomer colored orange and the symmetry related ones in gray (crystallographic 3-fold axis indicated as black triangle). On the left top view oriented as in 1A with N- and C-Terminus on the top. In the middle side view oriented as in 1B with labeled N- and C-Terminus. In the situation of the uncleaved precursor the membrane is located on top of the molecule. The disulfide bond is highlighted as stick model and beta strands are labeled according to TNF superfamily nomenclature. The dashed lines indicate flexible loops E-F and A-A’’ not visible in the electron density. On the right, bottom view of the TWEAK trimer. B) Solvent accessible electrostatic surface potential (red −4 kT to blue +4 kT) of the TWEAK trimer with the same orientations as in A. Resembling the high pI of TWEAK with 9.62 the complete upper surface is highly positively charged. A second basic patch is located at the side of the TWEAK trimer (dashed ellipse middle picture). This positively charged region is also found in other members of the TNF family (i.e. APRIL, BAFF) and coincides with their receptor binding site. C) Overview of the TWEAK-TWEAK interface as found in the homotrimer in the same orientation and labeled as in A (middle picture). Notable hydrogen bonds involved in the trimerization are indicated as dashed lines with the respective interacting amino acids as sticks. The hydrogen bonds with interacting atoms and distances are listed in the table.</p
    corecore