3 research outputs found
Estudio te贸rico de la evoluci贸n estructural y energ茅tica de los sistemas Si5-n(AlnHn)2- (n=0-5)
53 p.La nanotecnolog铆a comprende el estudio, dise帽o y creaci贸n de nuevos materiales a trav茅s del control de la materia a nivel de nanoescala. Un ejemplo de estos avances tecnol贸gicos, es la elaboraci贸n de biochips para detectar prote铆nas, una metodolog铆a basada en inmovilizar y orientar prote铆nas sobre la superficie de zagregados at贸micos preparados por medios f铆sicos.Los cl煤steres at贸micos se definen como c煤mulos o agregados de 谩tomos de tama帽o intermedio entre el nivel molecular y el bulk de un s贸lido. Comprendiendo la estabilidad y enlace qu铆mico de estos sistemas, es posible en un futuro predecir y comprender de manera m谩s adecuada los sitios de uni贸n de algunas prote铆nas sobre estos agregados. La naturaleza qu铆mica y f铆sica de los agregados at贸micos puede ser descrita mediante el uso de m茅todos de la mec谩nica cu谩ntica.Dentro del estudio qu铆mico y f铆sico de los agregados at贸micos, el estudio de la isovalencia es un 谩rea abierta y necesaria para comprender la estabilidad de estos sistemas. Un ejemplo de estos estudios, es la relaci贸n que existe entre los
compuestos NaSi5
- y Si5
2- con B5H5
2- y NaB5H5
-, respectivamente, donde cada 谩tomo
de Si se comporta de la misma manera que una unidad BH.
En esta investigaci贸n, se explora la isovalencia y la qu铆mica que existe en
cl煤steres at贸micos conformados por 谩tomos pertenecientes al grupo 13 y 14 de la
tabla peri贸dica. Concretamente, se estudia la evoluci贸n estructural del enlace
qu铆mico en la transformaci贸n del cl煤ster Si5
2- al Al5H5 2- , al intercambiar sucesivamentex un 谩tomo de silicio por una unidad AlH. Utilizando el an谩lisis de los Orbitales Naturales de Enlace (NBO), en conjunto con el an谩lisis de enlace qu铆mico basado en el particionamiento de la densidad electr贸nica (AdNDP), la Funci贸n de Localizaci贸n Electr贸nica (ELF) y los Orbitales Moleculares, se obtiene que la estructura tridimensional de los sistemas al realizar la transformaci贸n se conserva, y que los patrones de enlace, son acordes con los de los sistemas Si5-n(BnHn)2-(n = 0-5).
7 5. /ABSTRACT: Rol at the nanoscale level. An example of these technological advances is the development of biochips for detecting proteins, a methodology based on
immobilize and guide proteins on the surface of atomic aggregates prepared by
physical means. Atomic clusters are defined as aggregates of atoms of intermediate size between the molecular level and the bulk of a solid. Understanding the stability and chemical bonding of these systems will enable in the future, the prediction and proper
understanding of the binding sites of some proteins on these aggregates. The chemical and physical nature of atomic clusters can be described using quantum mechanics methods.
Within the chemical and physical study of atomic clusters, the study of isovalence
is an open area and necessary to understand the stability of these systems. An example of these studies is the existing relationship between the NaSi5 - and Si5 2- with
the NaB5H5 - and B5H5 2- compounds, respectively, where each Si atom behaves the
same way as a unit of B-H. In this research, we explore the isovalence and the existing chemistry in atomic clusters built by atoms from the 13 and 14 group of the periodic table, especially compounds of B- and C as well as Al- and Si, which have the same number of valence electrons. Specifically, we study the structural evolution of the chemical bond in the transformation from the Si5 2- to the Al5H5 2- cluster by exchanging a silicon atom by an Al-H unit. Analysis using Natural Bond Orbital (NBO), chemical bond based on the partitioning of the electron density (AdNDP), the Electronics Location Function (ELF) and the Molecular Orbitals, indicate that the three-dimensional structure of the systems when performed the transformation is preserved, and that the bond patterns are consistent with the systems Si5-n (BnHn)2- (n = 0-5)
Estudios de reactividad qu铆mica en cicloadiciones 1,3 dipolar mediante herramientas de mec谩nica cu谩ntica
68 p.Los derivados de pirazol son compuestos qu铆micos muy importantes en la industria farmac茅utica debido a que muestran un amplio espectro de actividades biol贸gicas, adem谩s de ser utilizados como agentes reductores del colesterol, antiinflamatorios, anticancer铆genos, antidepresivos y antipsic贸ticos. Una de las principales formas de obtener experimentalmente pirazoles funcionalizados ha sido mediante reacciones de cicloadici贸n 1,3 dipolar (1,3-DC). Las reacciones de cicloadici贸n 1,3 dipolar son reacciones qu铆micas entre un dipolo y un dipolar贸filo (esquema 1). Existe la necesidad de controlar la regioselectividad de estas reacciones debido a la diversidad de productos que se pueden obtener al variar los sustituyentes R unidos a estos sistemas.
Figura 1. Posible mecanismo de reacci贸n para una cicloadici贸n 1,3 dipolar. Imagen extra铆da de (Rolf, 1963).Estudios te贸ricos recientes, utilizando herramientas de mec谩nica cu谩ntica han mostrado que algunos 铆ndices de reactividad local, derivados de la Teor铆a de los Funcionales de la Densidad (DFT) como son la electrofilia y el an谩lisis de la funci贸n de Fukui, han permitido la predicci贸n y postulaci贸n de algunos modelos para explicar la competitividad regioselectiva en cicloadiciones 1,3 dipolar, dando explicaci贸n a las observaciones experimentales para este tipo de reacciones. Sin embargo, a煤n es poca la informaci贸n y escasos los resultados acerca de los perfiles de reacci贸n para este tipo de procesos. En esta investigaci贸n se desea evaluar algunos 铆ndices de reactividad te贸ricos derivados de la DFT conceptual, as铆 como analizar los perfiles de reacci贸n sobre reacciones de ciclaci贸n 1,3 dipolar./ABSTRACT:Pyrazole derivatives are chemical compounds very important in the pharmaceutical industry because they exhibit a broad spectrum of biological activities. In addition, they are used as cholesterol-lowering agents, anti-inflammatory, anticarcinogenic, antidepressants, and antipsychotics. One of the main ways to obtain experimentally functionalized pyrazoles has been through 1,3 dipolar cycloaddition reactions (1,3-DC). 1,3 dipolar cycloaddition are chemical reactions between a dipole and a dipolarophile (Scheme 1). There is a need to control the regioselectivity of these reactions due to the variety of products that can be obtained by varying the R substituents attached to these systems.Scheme 1. Possible reaction mechanism for a 1,3 dipolar cycloaddition. Image from (Rolf, 1963).Recent theoretical studies, using quantum mechanics tools have shown that some local reactivity indices derived from Density Functional Theory (DFT) such as the electrophilicity and analysis of the Fukui function, allow the prediction and application of some models to explain regioselective competitiveness in 1,3 dipolar cycloaddition, yielding explanations to the experimental observations for this type of reactions. However, there is little information and few results about the reaction profiles for these reactions. In this research we want to evaluate some theoretical reactivity indices derived from conceptual DFT, and analyze the reaction profiles on 1,3 dipolar cyclization reactions
Interpreting Aromaticity and Antiaromaticity through Bifurcation Analysis of the Induced Magnetic Field
Abstract In all molecules, a current density is induced when the molecule is subjected to an external magnetic field. In turn, this current density creates a particular magnetic field. In this work, the bifurcation value of the induced magnetic field is analyzed in a representative set of aromatic, non鈥恆romatic and antiaromatic monocycles, as well as a set of polycyclic hydrocarbons. The results show that the bifurcation value of the ring鈥恠haped domain adequately classifies the studied molecules according to their aromatic character. For aromatic and nonaromatic molecules, it is possible to analyze two ring鈥恠haped domains, one diatropic (inside the molecular ring) and one paratropic (outside the molecular ring). Meanwhile, for antiaromatic rings, only a diatropic ring鈥恠haped domain (outside the molecular ring) is possible to analyze, since the paratropic domain (inside the molecular ring) is irreducible with the maximum value (attractor) at the center of the molecular ring. In some of the studied cases, i.鈥塭., in heteroatomic species, bifurcation values do not follow aromaticity trends and present some inconsistencies in comparison to ring currents strengths, showing that this approximation provides only a qualitative estimation about (anti)aromaticity