1,539 research outputs found

    Fractional velocity as a tool for the study of non-linear problems

    Full text link
    Singular functions and, in general, H\"older functions represent conceptual models of nonlinear physical phenomena. The purpose of this survey is to demonstrate the applicability of fractional velocity as a tool to characterize Holder and in particular singular functions. Fractional velocities are defined as limit of the difference quotient of a fractional power and they generalize the local notion of a derivative. On the other hand, their properties contrast some of the usual properties of derivatives. One of the most peculiar properties of these operators is that the set of their non trivial values is disconnected. This can be used for example to model instantaneous interactions, for example Langevin dynamics. Examples are given by the De Rham and Neidinger's functions, represented by iterative function systems. Finally the conditions for equivalence with the Kolwankar-Gangal local fractional derivative are investigated.Comment: 21 pages; 2 figure

    A Symbolic Algorithm for Computation of Non-degenerate Clifford Algebra Matrix Representations

    Full text link
    Clifford algebras are an active area of mathematical research. The main objective of the paper is to exhibit a construction of a matrix algebra isomorphic to a Clifford algebra of signature (p,q), which can be automatically implemented using general purpose linear algebra software. While this is not the most economical way of implementation for lower-dimensional algebras it offers a transparent mechanism of translation between a Clifford algebra and its isomorphic faithful real matrix representation. Examples of lower dimensional Clifford algebras are presented.Comment: 220 page

    Sparse Representations of Clifford and Tensor algebras in Maxima

    Full text link
    Clifford algebras have broad applications in science and engineering. The use of Clifford algebras can be further promoted in these fields by availability of computational tools that automate tedious routine calculations. We offer an extensive demonstration of the applications of Clifford algebras in electromagnetism using the geometric algebra G3 = Cl(3,0) as a computational model in the Maxima computer algebra system. We compare the geometric algebra-based approach with conventional symbolic tensor calculations supported by Maxima, based on the itensor package. The Clifford algebra functionality of Maxima is distributed as two new packages called clifford - for basic simplification of Clifford products, outer products, scalar products and inverses; and cliffordan - for applications of geometric calculus.Comment: 23 pages, 2 figures; accepted for publication in Advances in Applied Clifford Algebras, special issue AGACSE 201

    Bouncing Branes

    Get PDF
    Two classical scalar fields are minimally coupled to gravity in the Kachru-Shulz-Silverstein scenario with a rolling fifth radius. A Tolman wormhole solution is found for a R x S^3 brane with Lorentz metric and for a R x AdS_3 brane with positive definite metric.Comment: 6 pages, LaTe
    corecore