782 research outputs found
Simple Model of the Transduction of Cell-Penetrating Peptides
Cell-penetrating peptides (CPPs) such as HIV's trans-activating
transcriptional activator (TAT) and polyarginine rapidly pass through the
plasma membranes of mammalian cells by an unknown mechanism called
transduction. They may be medically useful when fused to well-chosen chains of
fewer than about 35 amino acids. I offer a simple model of transduction in
which phosphatidylserines and CPPs effectively form two plates of a capacitor
with a voltage sufficient to cause the formation of transient pores
(electroporation). The model is consistent with experimental data on the
transduction of oligoarginine into mouse C2-C12 myoblasts and makes three
testable predictions.Comment: Seven pages. For a more complete version including the effects of
counterions, see arXiv:0810.2358v3 [q-bio.BM
Processus morphogénétiques
Enseignement Cours – Le mythe des 1,23 % Introduction Le cours de l’année 2017-2018 prolonge et complète celui de 2016-2017 qui avait permis d’aborder la question importante de la place des humains dans l’histoire des espèces animales et, tout particulièrement, de leur parenté avec les autres primates. Même si je suis réticent devant les conceptions animalistes, voire antispécistes, qui considèrent que le combat pour les droits des animaux s’inscrit dans la lignées des luttes antiracistes et ..
Cell‐penetrating peptides: Achievements and challenges in application for cancer treatment
One of the major hurdles to cure cancer lies in the low potency of currently available drugs, which could eventually be solved by using more potent therapeutic macromolecules, such as proteins or genes. However, although these macromolecules possess greater potency inside the cancer cells, the barely permeable cell membrane remains a formidable barrier to exert their efficacy. A widely used strategy is to use cell penetrating peptides (CPPs) to improve their intracellular uptake. Since the discovery of the first CPP, numerous CPPs have been derived from natural or synthesized products. Both in vitro and in vivo studies have demonstrated that those CPPs are highly efficient in transducing cargoes into almost all cell types. Therefore, to date, CPPs have been widely used for intracellular delivery of various cargoes, including peptides, proteins, genes, and even nanoparticles. In addition, recently, based on the successes of CPPs in cellular studies, their applications in vivo have been actively pursued. This review will focus on the advanced applications of CPP‐based in vivo delivery of therapeutics (e.g., small molecule drugs, proteins, and genes). In addition, we will highlight certain updated applications of CPPs for intracellular delivery of nanoparticulate drug carriers, as well as several “smart” strategies for tumor targeted delivery of CPP‐cargoes. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 102A: 575–587, 2014.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/102051/1/jbma34859.pd
Otx2-PNN Interaction to Regulate Cortical Plasticity
The ability of the environment to shape cortical function is at its highest during critical periods of postnatal development. In the visual cortex, critical period onset is triggered by the maturation of parvalbumin inhibitory interneurons, which gradually become surrounded by a specialized glycosaminoglycan-rich extracellular matrix: the perineuronal nets. Among the identified factors regulating cortical plasticity in the visual cortex, extracortical homeoprotein Otx2 is transferred specifically into parvalbumin interneurons and this transfer regulates both the onset and the closure of the critical period of plasticity for binocular vision. Here, we review the interaction between the complex sugars of the perineuronal nets and homeoprotein Otx2 and how this interaction regulates cortical plasticity during critical period and in adulthood
Sequence Defined Disulfide-Linked Shuttle for Strongly Enhanced Intracellular Protein Delivery
Intracellular protein transduction technology is opening the door for a promising alternative to gene therapy. Techniques have to address all critical steps, like efficient cell uptake, endolysosomal escape, low toxicity, while maintaining full functional activity of the delivered protein. Here, we present the use of a chemically precise, structure defined three-arm cationic oligomer carrier molecule for protein delivery. This carrier of exact and low molecular weight combines good cellular uptake with efficient endosomal escape and low toxicity. The protein cargo is covalently attached by a bioreversible disulfide linkage. Murine 3T3 fibroblasts could be transduced very efficiently with cargo nlsEGFP, which was tagged with a nuclear localization signal. We could show subcellular delivery of the nlsEGFP to the nucleus, confirming cytosolic delivery and expected subsequent subcellular trafficking. Transfection efficiency was concentration-dependent in a directly linear mode and 20-fold higher in comparison with HIV-TAT-nlsEGFP containing a functional TAT transduction domain. Furthermore, β-galactosidase as a model enzyme cargo, modified with the carrier oligomer, was transduced into neuroblastoma cells in enzymatically active form
J1/tenascin in substrate-bound and soluble form displays contrary effects on neurite outgrowth.
The Homeodomain Derived Peptide Penetratin Induces Curvature of Fluid Membrane Domains
BACKGROUND:Protein membrane transduction domains that are able to cross the plasma membrane are present in several transcription factors, such as the homeodomain proteins and the viral proteins such as Tat of HIV-1. Their discovery resulted in both new concepts on the cell communication during development, and the conception of cell penetrating peptide vectors for internalisation of active molecules into cells. A promising cell penetrating peptide is Penetratin, which crosses the cell membranes by a receptor and metabolic energy-independent mechanism. Recent works have claimed that Penetratin and similar peptides are internalized by endocytosis, but other endocytosis-independent mechanisms have been proposed. Endosomes or plasma membranes crossing mechanisms are not well understood. Previously, we have shown that basic peptides induce membrane invaginations suggesting a new mechanism for uptake, "physical endocytosis". METHODOLOGY/PRINCIPAL FINDINGS:Herein, we investigate the role of membrane lipid phases on Penetratin induced membrane deformations (liquid ordered such as in "raft" microdomains versus disordered fluid "non-raft" domains) in membrane models. Experimental data show that zwitterionic lipid headgroups take part in the interaction with Penetratin suggesting that the external leaflet lipids of cells plasma membrane are competent for peptide interaction in the absence of net negative charges. NMR and X-ray diffraction data show that the membrane perturbations (tubulation and vesiculation) are associated with an increase in membrane negative curvature. These effects on curvature were observed in the liquid disordered but not in the liquid ordered (raft-like) membrane domains. CONCLUSIONS/SIGNIFICANCE:The better understanding of the internalisation mechanisms of protein transduction domains will help both the understanding of the mechanisms of cell communication and the development of potential therapeutic molecular vectors. Here we showed that the membrane targets for these molecules are preferentially the fluid membrane domains and that the mechanism involves the induction of membrane negative curvature. Consequences on cellular uptake are discussed
- …
