2,104 research outputs found

    The survival of gas clouds in the Circumgalactic Medium of Milky Way-like galaxies

    Get PDF
    Observational evidence shows that low-redshift galaxies are surrounded by extended haloes of multiphase gas, the so-called 'circumgalactic medium' (CGM). To study the survival of relatively cool gas (T < 10^5 K) in the CGM, we performed a set of hydrodynamical simulations of cold (T = 10^4 K) neutral gas clouds travelling through a hot (T = 2x10^6 K) and low-density (n = 10^-4 cm^-3) coronal medium, typical of Milky Way-like galaxies at large galactocentric distances (~ 50-150 kpc). We explored the effects of different initial values of relative velocity and radius of the clouds. Our simulations were performed on a two-dimensional grid with constant mesh size (2 pc) and they include radiative cooling, photoionization heating and thermal conduction. We found that for large clouds (radii larger than 250 pc) the cool gas survives for very long time (larger than 250 Myr): despite that they are partially destroyed and fragmented into smaller cloudlets during their trajectory, the total mass of cool gas decreases at very low rates. We found that thermal conduction plays a significant role: its effect is to hinder formation of hydrodynamical instabilities at the cloud-corona interface, keeping the cloud compact and therefore more difficult to destroy. The distribution of column densities extracted from our simulations are compatible with those observed for low-temperature ions (e.g. SiII and SiIII) and for high-temperature ions (OVI) once we take into account that OVI covers much more extended regions than the cool gas and, therefore, it is more likely to be detected along a generic line of sight.Comment: 12 pages, 10 figures. Accepted for publication in MNRA

    System design of the Pioneer Venus spacecraft. Volume 6: Power subsystem studies

    Get PDF
    Selection of a baseline power subsystem for the probe bus, orbiter, and large and small probes has been performed as a part of the Pioneer Venus Mission Systems Design Study. In each case the selection process has involved trades and incorporated the results of previous related studies. Factors considered primary in the selection of each subsystem approach were cost, and the ability of each of the proposed subsystems to perform reliably under the rigors of the space environment, temperature extremes, and high g loads. A trade was made to consider the advantages of an unregulated primary bus versus a regulated bus. The decision to use an unregulated bus was based on cost, weight, and the increase in load isolation achievable through the use of individual load regulators
    corecore