660 research outputs found

    Depletion of M. tuberculosis GlmU from infected murine lungs effects the clearance of the pathogen

    Get PDF
    M. tuberculosis N-acetyl-glucosamine-1-phosphate uridyltransferase (GlmUMtb) is a bi-functional enzyme engaged in the synthesis of two metabolic intermediates N-acetylglucosamine-1-phosphate (GlcNAc-1-P) and UDP-GlcNAc, catalyzed by the C- and N-terminal domains respectively. UDP-GlcNAc is a key metabolite essential for the synthesis of peptidoglycan, disaccharide linker, arabinogalactan and mycothiols. While GlmUMtb was predicted to be an essential gene, till date the role of GlmUMtb in modulating the in vitro growth of Mtb or its role in survival of pathogen ex vivo / in vivo have not been deciphered. Here we present the results of a comprehensive study dissecting the role of GlmUMtb in arbitrating the survival of the pathogen both in vitro and in vivo. We find that absence of GlmUMtb leads to extensive perturbation of bacterial morphology and substantial reduction in cell wall thickness under normoxic as well as hypoxic conditions. Complementation studies show that the acetyl- and uridyl- transferase activities of GlmUMtb are independently essential for bacterial survival in vitro and GlmUMtb is also found to be essential for mycobacterial survival in THP-1 cells as well as in guinea pigs. Depletion of GlmUMtb from infected murine lungs, four weeks post infection, led to significant reduction in the bacillary load. The administration of Oxa33, a novel oxazolidine derivative that specifically inhibits GlmUMtb, to infected mice resulted in significant decrease in the bacillary load. Thus our study establishes GlmUMtb as a strong candidate for intervention measures against established tuberculosis infections

    Search for Higgs Boson Decay to a Charm Quark-Antiquark Pair in Proton-Proton Collisions at √s = 13 TeV

    Get PDF
    A search for the standard model Higgs boson decaying to a charm quark-antiquark pair, H→cÂŻc, produced in association with a leptonically decaying V (W or Z) boson is presented. The search is performed with proton-proton collisions at √s=13  TeV collected by the CMS experiment, corresponding to an integrated luminosity of 138  fb−1. Novel charm jet identification and analysis methods using machine learning techniques are employed. The analysis is validated by searching for Z→cÂŻc in VZ events, leading to its first observation at a hadron collider with a significance of 5.7 standard deviations. The observed (expected) upper limit on σ(VH)B(H→cÂŻc) is 0.94 (0.50+0.22−0.15)pb at 95% confidence level (C.L.), corresponding to 14 (7.6+3.4−2.3) times the standard model prediction. For the Higgs-charm Yukawa coupling modifier, Îșc, the observed (expected) 95% C.L. interval is 1.1<|Îșc|<5.5 (|Îșc|<3.4), the most stringent constraint to date

    Measurement of the cross section of top quark-antiquark pair production in association with a W boson in proton-proton collisions at s \sqrt{s} = 13 TeV

    Get PDF
    The production of a top quark-antiquark pair in association with a W boson (ttˉW)(t\bar{t}W) is measured in proton-proton collisions at a center-of-mass energy of 13 TeV. The analyzed data was recorded by the CMS experiment at the CERN LHC and corresponds to an integrated luminosity of 138 fb−1^{−1}. Events with two or three leptons (electrons and muons) and additional jets are selected. In events with two leptons, a multiclass neural network is used to distinguish between the signal and background processes. Events with three leptons are categorized based on the number of jets and of jets originating from b quark hadronization, and the lepton charges. The inclusive (ttˉW)(t\bar{t}W) production cross section in the full phase space is measured to be 868 ± 40(stat) ± 51(syst) fb. The (ttˉW)+(t\bar{t}W)+ and (ttˉW)−(t\bar{t}W)− cross sections are also measured as 553 ± 30(stat) ± 30(syst) and 343 ± 26(stat) ± 25(syst) fb, respectively, and the corresponding ratio of the two cross sections is found to be 1.61±0.15(stat)−0.05+0.07^{+0.07}_{−0.05}(syst). The measured cross sections are larger than but consistent with the standard model predictions within two standard deviations, and represent the most precise measurement of these cross sections to date

    Search for high-mass exclusive γγ → WW and γγ → ZZ production in proton-proton collisions at s \sqrt{s} = 13 TeV

    Get PDF

    Search for long-lived particles decaying to a pair of muons in proton-proton collisions at s \sqrt{s} = 13 TeV

    Get PDF
    An inclusive search for long-lived exotic particles decaying to a pair of muons is presented. The search uses data collected by the CMS experiment at the CERN LHC in proton-proton collisions at s√ = 13 TeV in 2016 and 2018 and corresponding to an integrated luminosity of 97.6 fb−1. The experimental signature is a pair of oppositely charged muons originating from a common secondary vertex spatially separated from the pp interaction point by distances ranging from several hundred ÎŒm to several meters. The results are interpreted in the frameworks of the hidden Abelian Higgs model, in which the Higgs boson decays to a pair of long-lived dark photons ZD, and of a simplified model, in which long-lived particles are produced in decays of an exotic heavy neutral scalar boson. For the hidden Abelian Higgs model with m(ZD) greater than 20 GeV and less than half the mass of the Higgs boson, they provide the best limits to date on the branching fraction of the Higgs boson to dark photons for cτ(ZD) (varying with m(ZD)) between 0.03 and ≈0.5 mm, and above ≈0.5 m. Our results also yield the best constraints on long-lived particles with masses larger than 10 GeV produced in decays of an exotic scalar boson heavier than the Higgs boson and decaying to a pair of muons

    Measurement of the Higgs boson inclusive and differential fiducial production cross sections in the diphoton decay channel with pp collisions at s \sqrt{s} = 13 TeV

    Get PDF
    The measurements of the inclusive and differential fiducial cross sections of the Higgs boson decaying to a pair of photons are presented. The analysis is performed using proton-proton collisions data recorded with the CMS detector at the LHC at a centre-of-mass energy of 13 TeV and corresponding to an integrated luminosity of 137 fb−1^{−1}. The inclusive fiducial cross section is measured to be σfidσ_{fid}=73.4−5.3+5.4^{+5.4}_{−5.3}(stat)−2.2+2.4^{+2.4}_{−2.2}(syst) fb, in agreement with the standard model expectation of 75.4 ± 4.1 fb. The measurements are also performed in fiducial regions targeting different production modes and as function of several observables describing the diphoton system, the number of additional jets present in the event, and other kinematic observables. Two double differential measurements are performed. No significant deviations from the standard model expectations are observed

    Search for pair-produced vector-like leptons in final states with third-generation leptons and at least three b quark jets in proton-proton collisions at √s = 13 TeV

    Get PDF

    Observation of τ Lepton Pair Production in Ultraperipheral Pb-Pb Collisions at sqrt[s_{NN}]=5.02 TeV

    Get PDF

    A portrait of the Higgs boson by the CMS experiment ten years after the discovery

    Get PDF
    In July 2012, the ATLAS and CMS collaborations at the CERN Large Hadron Collider announced the observation of a Higgs boson at a mass of around 125 gigaelectronvolts. Ten years later, and with the data corresponding to the production of a 30-times larger number of Higgs bosons, we have learnt much more about the properties of the Higgs boson. The CMS experiment has observed the Higgs boson in numerous fermionic and bosonic decay channels, established its spin–parity quantum numbers, determined its mass and measured its production cross-sections in various modes. Here the CMS Collaboration reports the most up-to-date combination of results on the properties of the Higgs boson, including the most stringent limit on the cross-section for the production of a pair of Higgs bosons, on the basis of data from proton–proton collisions at a centre-of-mass energy of 13 teraelectronvolts. Within the uncertainties, all these observations are compatible with the predictions of the standard model of elementary particle physics. Much evidence points to the fact that the standard model is a low-energy approximation of a more comprehensive theory. Several of the standard model issues originate in the sector of Higgs boson physics. An order of magnitude larger number of Higgs bosons, expected to be examined over the next 15 years, will help deepen our understanding of this crucial sector

    A search for new physics in central exclusive production using the missing mass technique with the CMS detector and the CMS-TOTEM precision proton spectrometer

    Get PDF
    A generic search is presented for the associated production of a Z boson or a photon with an additional unspecified massive particle X, pp → pp + Z/γ + X, in proton-tagged events from proton–proton collisions at √s = 13 TeV, recorded in 2017 with the CMS detector and the CMS-TOTEM precision proton spectrometer. The missing mass spectrum is analysed in the 600–1600 GeV range and a fit is performed to search for possible deviations from the background expectation. No significant excess in data with respect to the background predictions has been observed. odelindependent upper limits on the visible production cross section of pp → pp + Z/γ + X are set
    • 

    corecore