13 research outputs found
Design and Development of Two-Dimensional Strained Layer Superlattice (SLS) Detector Arrays for IR Applications
The implementation of strained layer superlattices (SLS) for detection of infrared (IR) radiation has enabled compact, high performance IR detectors and two-dimensional focal plane arrays (FPAs). Since initially proposed three decades ago, SLS detectors exploiting type II band structures existing in the InAs/GaSb material system have become integral components in high resolution thermal detection and imaging systems. The extensive technological progress occurring in this area is attributed in part to the band structure flexibility offered by the nearly lattice-matched InAs/AlSb/Ga(In)Sb material system, enabling the operating IR wavelength range to be tailored through adjustment of the constituent strained layer compositions and/or thicknesses. This has led to the development of many advanced type II SLS device concepts and architectures for low-noise detectors and FPAs operating from the short-wavelength infrared (SWIR) to very long-wavelength infrared (VLWIR) bands. These include double heterostructures and unipolar-barrier structures such as graded-gap M-, W-, and N-structures, nBn, pMp, and pBn detectors, and complementary barrier infrared detector (CBIRD) and pBiBn designs. These diverse type II SLS detector architectures have provided researchers with expanded capabilities to optimize detector and FPA performance to further benefit a broad range of electro-optical/IR applications
Review of Graphene Technology and Its Applications for Electronic Devices
Graphene has amazing abilities due to its unique band structure characteristics defining its enhanced electrical capabilities for a material with the highest characteristic mobility known to exist at room temperature. The high mobility of graphene occurs due to electron delocalization and weak electronâphonon interaction, making graphene an ideal material for electrical applications requiring high mobility and fast response times. In this review, we cover grapheneâs integration into infrared (IR) devices, electro-optic (EO) devices, and field effect transistors (FETs) for radio frequency (RF) applications. The benefits of utilizing graphene for each case are discussed, along with examples showing the current state-of-the-art solutions for these applications
Progress in resonator quantum well infrared photodetector (R-QWIP) focal plane arrays
In this work, the performance of a 640 X 512 long-wavelength resonant quantum well infrared photodetector (R-QWIP) focal plane array (FPA) was evaluated as a function of operating temperature, bias, and photon flux using an F/2.2 optic. From these FPA measurements an assessment of the dark current, noise, conversion efficiency and noise-equivalent temperature difference is provided herein. Histogram results are used to support a statistical interpretation of operability and non-uniformity across the R-QWIP FPA. In addition, single pixel devices fabricated from the same wafer lot enabled supplemental noise gain and spectral response measurements. The spectral response of this R-QWIP structure was confirmed to peak around 8.3 microns with a spectral bandwidth or approximately 1 micron (full-width half maximum) and the noise gain measurements were used to provide an estimation of the expected external quantum efficiency (conversion efficiency = quantum efficiency â gain)
Development of Nanostructured Antireflection Coatings for Infrared and Electro-Optical Systems
Electro-optic infrared technologies and systems operating from ultraviolet (UV) to long-wave infrared (LWIR) spectra are being developed for a variety of defense and commercial systems applications. Loss of a significant portion of the incident signal due to reflection limits the performance of electro-optic infrared (IR) sensing systems. A critical technology being developed to overcome this limitation and enhance the performance of sensing systems is advanced antireflection (AR) coatings. Magnolia is actively involved in the development and advancement of nanostructured AR coatings for a wide variety of defense and commercial applications. Ultrahigh AR performance has been demonstrated for UV to LWIR spectral bands on various substrates. The AR coatings enhance the optical transmission through optical components and devices by significantly minimizing reflection losses, a substantial improvement over conventional thin-film AR coating technologies. Nanostructured AR coatings have been fabricated using a nanomanufacturable self-assembly process on substrates that are transparent for a given spectrum of interest ranging from UV to LWIR. The nanostructured multilayer structures have been designed, developed and optimized for various optoelectronic applications. The optical properties of optical components and sensor substrates coated with AR structures have been measured and the process parameters fine-tuned to achieve a predicted high level of performance. In this paper, we review our latest work on high quality nanostructure-based AR coatings, including recent efforts on the development of nanostructured AR coatings on IR substrates