9 research outputs found

    Quantum Dots-Based Nano-Coatings for Inhibition of Microbial Biofilms: A Mini Review

    Get PDF
    Infection of implants by microbial biofilm is chiefly caused by Staphylococci, Pseudomonas and Candida species. The growth of microbes by forming biofilms offers them protection from antibiotics, drugs and host defense mechanisms. The eradication of biofilms from implants and medical devices is difficult because of the protection by the biofilm forming pathogenic microbes. Hence, researches are focused on development of antibiofilm materials, which are basically constituted of antimicrobial substances or antimicrobial coatings. Nanomaterial-based coatings offer a promising solution in this regard. Quantum dots (QDs) are the group of semiconductor nanoparticles with high photoluminescent properties compared to conventional organic fluorophores. Thus, drug-conjugated QDs can be a promising alternative for biofilm treatment, and these can serve as excellent alternatives for the mitigation of recalcitrant biomaterial-associated infections caused by resistant strains. Furthermore, their use as antibiofilm coating would avoid the dispersion of antimicrobial agents in the surrounding cells and tissues, thereby minimizing the risks of developing microbial resistivity

    Controlled Synthesis of Gold Nanoparticles Using Aspergillus terreus

    Get PDF
    Biosynthesis of monodispersed nanoparticles, along with determination of potential responsible biomolecules, is the major bottleneck in the area of bionanotechnology research. The present study focuses on an ecofriendly, ambient temperature protocol for size controlled synthesis of gold nanoparticles, using the fungus Aspergillus terreus IF0. Gold nanoparticles were formed immediately, with the addition of chloroauric acid to the aqueous fungal extract. Synthesized nanoparticles were characterized by UV-Vis spectroscopy, TEM-EDX, and XRD analysis. Particle diameter and dispersity of nanoparticles were controlled by varying the pH of the fungal extract. At pH 10, the average size of the synthesized particles was in the range of 10–19 nm. Dialysis to obtain high and low molecular weight fraction followed by FTIR analysis revealed that biomolecules larger than 12 kDa and having –CH, –NH, and –SH functional groups were responsible for bioreduction and stabilization. In addition, the synthesized gold nanoparticles were found to be selectively bactericidal against the pathogenic gram negative bacteria, Escherichia coli

    Metal-Fungus interaction: Review on cellular processes underlying heavy metal detoxification and synthesis of metal nanoparticles

    No full text
    The most adverse outcome of increasing industrialization is contamination of the ecosystem with heavy metals. Toxic heavy metals possess a deleterious effect on all forms of biota; however, they affect the microbial system directly. These heavy metals form complexes with the microbial system by forming covalent and ionic bonds and affecting them at the cellular level and biochemical and molecular levels, ultimately leading to mutation affecting the microbial population. Microbes, in turn, have developed efficient resistance mechanisms to cope with metal toxicity. This review focuses on the vital tolerance mechanisms employed by the fungus to resist the toxicity caused by heavy metals. The tolerance mechanisms have been basically categorized into biosorption, bioaccumulation, biotransformation, and efflux of metal ions. The mechanisms of tolerance to some toxic metals as copper, arsenic, zinc, cadmium, and nickel have been discussed. The article summarizes and provides a detailed illustration of the tolerance means with specific examples in each case. Exposure of metals to fungal cells leads to a response that may lead to the formation of metal nanoparticles to overcome the toxicity by immobilization in less toxic forms. Therefore, fungal-mediated green synthesis of metal nanoparticles, their mechanism of synthesis, and applications have also been discussed. An understanding of how fungus resists metal toxicity can provide insights into the development of adaption techniques and methodologies for detoxification and removal of metals from the environment

    Recent innovations of nanotechnology in water treatment: A comprehensive review

    No full text
    Environmental pollution from organic and inorganic pollutants poses a threat to the ecosystem. Pollutant's prevalence and persistence have increased significantly in recent years. In order to enhance the quality of naturally accessible water to a level suitable for human consumption, a number of techniques have been employed. In this context, the use of cutting-edge nanotechnology to classical process engineering paves the way for technical encroachments in advanced water and wastewater technology. Nanotechnology has the potential to ameliorate the quality, availability, and viability of water supplies in the long run by facilitating reuse, recycling and remediation of water. The promising role of nanotechnology in wastewater remediation is highlighted in this paper, which also covers current advancements in nanotechnology-mediated remediation systems. Moreover, nano-based materials such as nano-adsorbents, photocatalysts, nano-metals and nanomembranes are discussed in this review of recent breakthroughs in nanotechnologies for water contaminant remediation. © 2021 Elsevier Lt

    Metal-Fungus interaction: Review on cellular processes underlying heavy metal detoxification and synthesis of metal nanoparticles

    No full text
    The most adverse outcome of increasing industrialization is contamination of the ecosystem with heavy metals. Toxic heavy metals possess a deleterious effect on all forms of biota; however, they affect the microbial system directly. These heavy metals form complexes with the microbial system by forming covalent and ionic bonds and affecting them at the cellular level and biochemical and molecular levels, ultimately leading to mutation affecting the microbial population. Microbes, in turn, have developed efficient resistance mechanisms to cope with metal toxicity. This review focuses on the vital tolerance mechanisms employed by the fungus to resist the toxicity caused by heavy metals. The tolerance mechanisms have been basically categorized into biosorption, bioaccumulation, biotransformation, and efflux of metal ions. The mechanisms of tolerance to some toxic metals as copper, arsenic, zinc, cadmium, and nickel have been discussed. The article summarizes and provides a detailed illustration of the tolerance means with specific examples in each case. Exposure of metals to fungal cells leads to a response that may lead to the formation of metal nanoparticles to overcome the toxicity by immobilization in less toxic forms. Therefore, fungal-mediated green synthesis of metal nanoparticles, their mechanism of synthesis, and applications have also been discussed. An understanding of how fungus resists metal toxicity can provide insights into the development of adaption techniques and methodologies for detoxification and removal of metals from the environment

    Controlled synthesis of gold nanoparticles using Aspergillus terreus IF0 and its antibacterial potential against Gram negative pathogenic bacteria

    No full text
    Biosynthesis of monodispersed nanoparticles, along with determination of potential responsible biomolecules, is the major bottleneck in the area of bionanotechnology research. The present study focuses on an ecofriendly, ambient temperature protocol for size controlled synthesis of gold nanoparticles, using the fungus Aspergillus terreus IF0. Gold nanoparticles were formed immediately, with the addition of chloroauric acid to the aqueous fungal extract. Synthesized nanoparticles were characterized by UV-Vis spectroscopy, TEM-EDX, and XRD analysis. Particle diameter and dispersity of nanoparticles were controlled by varying the pH of the fungal extract. At pH 10, the average size of the synthesized particles was in the range of 10-19 nm. Dialysis to obtain high and low molecular weight fraction followed by FTIR analysis revealed that biomolecules larger than 12 kDa and having -CH, -NH, and -SH functional groups were responsible for bioreduction and stabilization. In addition, the synthesized gold nanoparticles were found to be selectively bactericidal against the pathogenic gram negative bacteria, Escherichia coli

    Bioaccumulation of CdSe Quantum Dots Show Biochemical and Oxidative Damage in Wistar Rats

    No full text
    Cadmium selenium quantum dots (CdSe QDs) with modified surfaces exhibit superior dispersion stability and high fluorescence yield, making them desirable biological probes. The knowledge of cellular and biochemical toxicity has been lacking, and there is little information on the correlation between in vitro and in vivo data. The current study was carried out to assess the toxicity of CdSe QDs after intravenous injection in Wistar male rats (230 g). The rats were given a single dose of QDs of 10, 20, 40, and 80 mg/kg and were kept for 30 days. Following that, various biochemical assays, hematological parameters, and bioaccumulation studies were carried out. Functional as well as clinically significant changes were observed. There was a significant increase in WBC while the RBC decreased. This suggested that CdSe quantum dots had inflammatory effects on the treated rats. The various biochemical assays clearly showed that high dose induced hepatic injury. At a dose of 80 mg/kg, bioaccumulation studies revealed that the spleen (120 g/g), liver (78 g/g), and lungs (38 g/g) accumulated the most. In treated Wistar rats, the bioretention profile of QDs was in the following order: the spleen, liver, kidney, lungs, heart, brain, and testis. The accumulation of these QDs induced the generation of intracellular reactive oxygen species, resulting in an alteration in antioxidant activity. It is concluded that these QDs caused oxidative stress, which harmed cellular functions and, under certain conditions, caused partial brain, kidney, spleen, and liver dysfunction. This is one of the most comprehensive in vivo studies on the nanotoxicity of CdSe quantum dots
    corecore