4 research outputs found

    Metal-Coordination-Induced Fusion Creates Hollow Crystalline Molecular Superstructures

    No full text
    In this work, we report the formation of superstructures assembled from organic tubular crystals mediated by metal-coordination chemistry. This template-free process involves the crystallization of molecules into crystals having a rectangular and uniform morphology, which then go on to fuse together into multibranched superstructures. The initially hollow and organic crystals are obtained under solvothermal conditions in the presence of a copper salt, whereas the superstructures are subsequently formed by aging the reaction mixture at room temperature. The mild thermodynamic conditions and the favorable kinetics of this unique self-assembly process allowed us to <i>ex-situ</i> monitor the superstructure formation by electron microscopy, highlighting a pivotal and unusual role for copper ions in their formation and stabilization

    Metal-Coordination-Induced Fusion Creates Hollow Crystalline Molecular Superstructures

    No full text
    In this work, we report the formation of superstructures assembled from organic tubular crystals mediated by metal-coordination chemistry. This template-free process involves the crystallization of molecules into crystals having a rectangular and uniform morphology, which then go on to fuse together into multibranched superstructures. The initially hollow and organic crystals are obtained under solvothermal conditions in the presence of a copper salt, whereas the superstructures are subsequently formed by aging the reaction mixture at room temperature. The mild thermodynamic conditions and the favorable kinetics of this unique self-assembly process allowed us to <i>ex-situ</i> monitor the superstructure formation by electron microscopy, highlighting a pivotal and unusual role for copper ions in their formation and stabilization

    Metallic Nanocrystal Ripening on Inorganic Surfaces

    No full text
    In this paper, we demonstrate the formation of hybrid nanostructures consisting of two distinctive components mainly in a one-to-one ratio. Thermolysis of inorganic nanotubes (INT) and closed-cage, inorganic fullerene-like (IF) nanoparticles decorated with a dense coating of metallic nanoparticles (M = Au, Ag, Pd) results in migration of relatively small NPs or surface-enhanced diffusion of atoms or clusters, generating larger particles (ripening). AuNP growth on the surface of INTs has been captured in real time using in situ electron microscopy measurements. Reaction of the AuNP-decorated INTs with an alkylthiol results in a chemically induced NP fusion process at room temperature. The NPs do not dissociate from the surfaces of the INTs and IFs, but for proximate IFs we observed fusion between AuNPs originating from different IFs

    Metallic Nanocrystal Ripening on Inorganic Surfaces

    No full text
    In this paper, we demonstrate the formation of hybrid nanostructures consisting of two distinctive components mainly in a one-to-one ratio. Thermolysis of inorganic nanotubes (INT) and closed-cage, inorganic fullerene-like (IF) nanoparticles decorated with a dense coating of metallic nanoparticles (M = Au, Ag, Pd) results in migration of relatively small NPs or surface-enhanced diffusion of atoms or clusters, generating larger particles (ripening). AuNP growth on the surface of INTs has been captured in real time using in situ electron microscopy measurements. Reaction of the AuNP-decorated INTs with an alkylthiol results in a chemically induced NP fusion process at room temperature. The NPs do not dissociate from the surfaces of the INTs and IFs, but for proximate IFs we observed fusion between AuNPs originating from different IFs
    corecore