33 research outputs found

    Baseline and acquired resistance to bedaquiline, linezolid and pretomanid, and impact on treatment outcomes in four tuberculosis clinical trials containing pretomanid

    Get PDF
    Bedaquiline (B), pretomanid (Pa) and linezolid (L) are key components of new regimens for treating rifampicin-resistant tuberculosis (TB). However, there is limited information on the global prevalence of resistance to these drugs and the impact of resistance on treatment outcomes. Mycobacterium tuberculosis (MTB) phenotypic drug susceptibility and whole-genome sequence (WGS) data, as well as patient profiles from 4 pretomanid-containing trials–STAND, Nix-TB, ZeNix and SimpliciTB–were used to investigate the rates of baseline resistance (BR) and acquired resistance (AR) to BPaL drugs, as well as their genetic basis, risk factors and impact on treatment outcomes. Data from >1,000 TB patients enrolled from 2015 to 2020 in 12 countries was assessed. We identified 2 (0.3%) participants with linezolid BR. Pretomanid BR was also rare, with similar rates across TB drug resistance types (0–2.1%). In contrast, bedaquiline BR was more prevalent among participants with highly resistant TB or longer prior treatment histories than those with newly diagnosed disease (5.2–6.3% vs. 0–0.3%). Bedaquiline BR was a risk factor for bacteriological failure or relapse in Nix-TB/ZeNix; 3/12 (25%, 95% CI 5–57%) participants with vs. 6/185 (3.2%, 1.2–6.9%) without bedaquiline BR. Across trials, we observed no linezolid AR, and only 3 cases of bedaquiline AR, including 2 participants with poor adherence. Overall, pretomanid AR was also rare, except in ZeNix patients with bedaquiline BR. WGS analyses revealed novel mutations in canonical resistant genes and, in 7 MTB isolates, the genetic determinants could not be identified. The overall low rates of BR to linezolid and pretomanid, and to a lesser extent to bedaquiline, observed in the pretomanid trials are in support of the worldwide implementation of BPaL-based regimens. Similarly, the overall low AR rates observed suggest BPaL drugs are better protected in the regimens trialed here than in other regimens combining bedaquiline with more, but less effective drugs

    Evaluation of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Molecular Typing of Acinetobacter baumannii in Comparison with Orthogonal Methods

    Get PDF
    Colonization and subsequent health care-associated infection (HCAI) with Acinetobacter baumannii are a concern for vulnerable patient groups within the hospital setting. Outbreaks involving multidrug-resistant strains are associated with increased patient morbidity and mortality and poorer overall outcomes. Reliable molecular typing methods can help to trace transmission routes and manage outbreaks. In addition to methods deployed by reference laboratories, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) may assist by making initial in-house judgments on strain relatedness. However, limited studies on method reproducibility exist for this application. We applied MALDI-TOF MS typing to A. baumannii isolates associated with a nosocomial outbreak and evaluated different methods for data analysis. In addition, we compared MALDI-TOF MS with whole-genome sequencing (WGS) and Fourier transform infrared spectroscopy (FTIR) as orthogonal methods to further explore their resolution for bacterial strain typing. A related subgroup of isolates consistently clustered separately from the main outbreak group by all investigated methods. This finding, combined with epidemiological data from the outbreak, indicates that these methods identified a separate transmission event unrelated to the main outbreak. However, the MALDI-TOF MS upstream approach introduced measurement variability impacting method reproducibility and limiting its reliability as a standalone typing method. Availability of in-house typing methods with well-characterized sources of measurement uncertainty could assist with rapid and dependable confirmation (or denial) of suspected transmission events. This work highlights some of the steps to be improved before such tools can be fully integrated into routine diagnostic service workflows for strain typing. IMPORTANCE Managing the transmission of antimicrobial resistance necessitates reliable methods for tracking outbreaks. We compared the performance of MALDI-TOF MS with orthogonal approaches for strain typing, including WGS and FTIR, for Acinetobacter baumannii isolates correlated with a health care-associated infection (HCAI) event. Combined with epidemiological data, all methods investigated identified a group of isolates that were temporally and spatially linked to the outbreak, yet potentially attributed to a separate transmission event. This may have implications for guiding infection control strategies during an outbreak. However, the technical reproducibility of MALDI-TOF MS needs to be improved for it to be employed as a standalone typing method, as different stages of the experimental workflow introduced bias influencing interpretation of biomarker peak data. Availability of in-house methods for strain typing of bacteria could improve infection control practices following increased reports of outbreaks of antimicrobial-resistant organisms during the COVID-19 pandemic, related to sessional usage of personal protective equipment (PPE)

    Approaches in biotechnological applications of natural polymers

    Get PDF
    Natural polymers, such as gums and mucilage, are biocompatible, cheap, easily available and non-toxic materials of native origin. These polymers are increasingly preferred over synthetic materials for industrial applications due to their intrinsic properties, as well as they are considered alternative sources of raw materials since they present characteristics of sustainability, biodegradability and biosafety. As definition, gums and mucilages are polysaccharides or complex carbohydrates consisting of one or more monosaccharides or their derivatives linked in bewildering variety of linkages and structures. Natural gums are considered polysaccharides naturally occurring in varieties of plant seeds and exudates, tree or shrub exudates, seaweed extracts, fungi, bacteria, and animal sources. Water-soluble gums, also known as hydrocolloids, are considered exudates and are pathological products; therefore, they do not form a part of cell wall. On the other hand, mucilages are part of cell and physiological products. It is important to highlight that gums represent the largest amounts of polymer materials derived from plants. Gums have enormously large and broad applications in both food and non-food industries, being commonly used as thickening, binding, emulsifying, suspending, stabilizing agents and matrices for drug release in pharmaceutical and cosmetic industries. In the food industry, their gelling properties and the ability to mold edible films and coatings are extensively studied. The use of gums depends on the intrinsic properties that they provide, often at costs below those of synthetic polymers. For upgrading the value of gums, they are being processed into various forms, including the most recent nanomaterials, for various biotechnological applications. Thus, the main natural polymers including galactomannans, cellulose, chitin, agar, carrageenan, alginate, cashew gum, pectin and starch, in addition to the current researches about them are reviewed in this article.. }To the Conselho Nacional de Desenvolvimento Cientfíico e Tecnológico (CNPq) for fellowships (LCBBC and MGCC) and the Coordenação de Aperfeiçoamento de Pessoal de Nvíel Superior (CAPES) (PBSA). This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, the Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and COMPETE 2020 (POCI-01-0145-FEDER-006684) (JAT)

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed

    Improving the Drug Development Pipeline for Mycobacteria: Modelling Antibiotic Exposure in the Hollow Fibre Infection Model

    Get PDF
    Mycobacterial infections are difficult to treat, requiring a combination of drugs and lengthy treatment times, thereby presenting a substantial burden to both the patient and health services worldwide. The limited treatment options available are under threat due to the emergence of antibiotic resistance in the pathogen, hence necessitating the development of new treatment regimens. Drug development processes are lengthy, resource intensive, and high-risk, which have contributed to market failure as demonstrated by pharmaceutical companies limiting their antimicrobial drug discovery programmes. Pre-clinical protocols evaluating treatment regimens that can mimic in vivo PK/PD attributes can underpin the drug development process. The hollow fibre infection model (HFIM) allows for the pathogen to be exposed to a single or a combination of agents at concentrations achieved in vivo–in plasma or at infection sites. Samples taken from the HFIM, depending on the analyses performed, provide information on the rate of bacterial killing and the emergence of resistance. Thereby, the HFIM is an effective means to investigate the efficacy of a drug combination. Although applicable to a wide variety of infections, the complexity of anti-mycobacterial drug discovery makes the information available from the HFIM invaluable as explored in this review

    Not Available

    No full text
    Not AvailableStreptomyces the predominant genus of Actinobacteria and plays an important role in the recycling of soil organic matter and production of important secondary metabolites. The occurrence and diversity assessment of species revealed alkaline and poor nutrient status of soils of semi-arid region of Jodhpur, Rajasthan. The morphological and biochemical characterization of 21 isolates facilitated Genus level identification but were insufficient to designate species. Species designation based on 16S rRNA gene delineated 21 isolates into 14 species. Upon BLAST search, the test isolates exhibited 98 to 100% identities with that of the best aligned sequences of the NCBI database. The GC content of 16S rRNA gene sequences of all the Streptomyces isolates tested ranged from 59.03% to 60.94%. The multiple sequence alignment of all the 21 isolates generated a phylogram with high bootstrap values indicating reliable grouping of isolates based on nucleotide sequence variations by way of insertion, deletion and substitutions and 16S rRNA length polymorphism. Some of the Streptomyces species molecularly identified under present study are reported for the first time from semi-arid region of Jodhpur.Not Availabl

    Advancement of Abiotic Stresses for Microalgal Lipid Production and Its Bioprospecting into Sustainable Biofuels

    No full text
    The world is currently facing global energy crises and escalating environmental pollution, which are caused by the extensive exploitation of conventional energy sources. The limited availability of conventional energy sources has opened the door to the search for alternative energy sources. In this regard, microalgae have emerged as a promising substitute for conventional energy sources due to their high photosynthetic rate, high carbohydrate and lipid content, efficient CO2 fixation capacity, and ability to thrive in adverse environments. The research and development of microalgal-based biofuel as a clean and sustainable alternative energy source has been ongoing for many years, but it has not yet been widely adopted commercially. However, it is currently gaining greater attention due to the integrated biorefinery concept. This study provides an in-depth review of recent advances in microalgae cultivation techniques and explores methods for increasing lipid production by manipulating environmental factors. Furthermore, our discussions have covered high lipid content microalgal species, harvesting methods, biorefinery concepts, process optimizing software tools, and the accumulation of triglycerides in lipid droplets. The study additionally explores the influence of abiotic stresses on the response of biosynthetic genes involved in lipid synthesis and metabolism. In conclusion, algae-based biofuels offer a viable alternative to traditional fuels for meeting the growing demand for energy
    corecore