120 research outputs found

    Enhanced cartilage regeneration in MIA/CD-RAP deficient mice

    Get PDF
    Melanoma inhibitory activity/cartilage-derived retinoic acid-sensitive protein (MIA/CD-RAP) is a small soluble protein secreted from chondrocytes. It was identified as the prototype of a family of extracellular proteins adopting an SH3 domain-like fold. In order to study the consequences of MIA/CD-RAP deficiency in detail we used mice with a targeted gene disruption of MIA/CD-RAP (MIA−/−) and analyzed cartilage organisation and differentiation in in vivo and in vitro models. Cartilage formation and regeneration was determined in models for osteoarthritis and fracture healing in vivo, in addition to in vitro studies using mesenchymal stem cells of MIA−/− mice. Interestingly, our data suggest enhanced chondrocytic regeneration in the MIA−/− mice, modulated by enhanced proliferation and delayed differentiation. Expression analysis of cartilage tissue derived from MIA−/− mice revealed strong downregulation of nuclear RNA-binding protein 54-kDa (p54nrb), a recently described modulator of Sox9 activity. In this study, we present p54nrb as a mediator of MIA/CD-RAP to promote chondrogenesis. Taken together, our data indicate that MIA/CD-RAP is required for differentiation in cartilage potentially by regulating signaling processes during differentiation

    Articular cartilage mineralization in osteoarthritis of the hip

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this study was to examine the frequency of articular cartilage calcification in patients with end-stage hip OA. Further, its impact on the clinical situation and the OA severity are analyzed.</p> <p>Methods</p> <p>Eighty patients with OA of the hip who consecutively underwent total hip replacement were prospectively evaluated, and 10 controls were included. The patients' X-rays were analyzed for the presence of articular cartilage mineralization. A Harris Hip Score (HHS) was preoperatively calculated for every patient.</p> <p>Slab specimens from the femoral head of bone and cartilage and an additional square centimeter of articular cartilage from the main chondral defect were obtained from each patient for analysis of mineralization by digital contact radiography (DCR). Histological grading was also performed. In a subset of 20 patients, minerals were characterized with an electron microscope (FE-SEM).</p> <p>Results</p> <p>Calcifications were seen in all OA cartilage and slab specimens using DCR, while preoperative X-rays revealed calcification in only 17.5%. None of the control cartilage specimens showed mineralization. There was a highly significant inverse correlation between articular cartilage calcification and preoperative HHS. Histological OA grade correlated positively with the amount of matrix calcification. FE-SEM analysis revealed basic calcium phosphate (BCP) as the predominant mineral; CPPD crystals were found in only two patients.</p> <p>Conclusions</p> <p>Articular cartilage calcification is a common event in osteoarthritis of the hip. The amount of calcification correlates with clinical symptoms and histological OA grade.</p

    Ultrasonic reflection coefficient and surface roughness index of OA articular cartilage: relation to pathological assessment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Early diagnosis of Osteoarthritis (OA) is essential for preventing further cartilage destruction and decreasing severe complications. The aims of this study are to explore the relationship between OA pathological grades and quantitative acoustic parameters and to provide more objective criteria for ultrasonic microscopic evaluation of the OA cartilage.</p> <p>Methods</p> <p>Articular cartilage samples were prepared from rabbit knees and scanned using ultrasound biomicroscopy (UBM). Three quantitative parameters, including the roughness index of the cartilage surface (URI), the reflection coefficients from the cartilage surface (R) and from the cartilage-bone interface (R<sub>bone</sub>) were extracted. The osteoarthritis grades of these cartilage samples were qualitatively assessed by histology according to the grading standards of International Osteoarthritis Institute (OARSI). The relationship between these quantitative parameters and the osteoarthritis grades was explored.</p> <p>Results</p> <p>The results showed that URI increased with the OA grade. URI of the normal cartilage samples was significantly lower than the one of the OA cartilage samples. There was no significant difference in URI between the grade 1 cartilage samples and the grade 2 cartilage samples. The reflection coefficient of the cartilage surface reduced significantly with the development of OA (p < 0.05), while the reflection coefficient of the cartilage-bone interface increased with the increase of grade.</p> <p>Conclusion</p> <p>High frequency ultrasound measurements can reflect the changes in the surface roughness index and the ultrasound reflection coefficients of the cartilage samples with different OA grades. This study may provide useful information for the quantitative ultrasonic diagnosis of early OA.</p

    Oestrogen is important for maintenance of cartilage and subchondral bone in a murine model of knee osteoarthritis

    Get PDF
    Introduction: Oestrogen depletion may influence onset and/or progression of osteoarthritis. We investigated in an ovariectomized mouse model the impact of oestrogen loss and oestrogen supplementation on articular cartilage and subchondral bone in tibia and patella, and assessed bone changes in osteoarthritis development.Methods: C3H/HeJ mice were divided into four groups: sham-operated, oestrogen depletion by ovariectomy (OVX), OVX with estradiol supplementation (OVX+E) and OVX with bisphosphonate (OVX+BP). Each mouse had one knee injected with low-dose iodoacetate (IA), and the contralateral knee was injected with saline. Cartilage was analysed histologically 12 weeks postsurgery; bone changes were monitored over time using in vivo micro-computed tomography.Results: In tibiae, OVX alone failed to induce cartilage damage, but OVX and IA combination significantly induced cartilage damage. In patellae, OVX alone induced significant cartilage damage, whic
    corecore