5,815 research outputs found

    Optical Weak Link between Two Spatially Separate Bose-Einstein Condensates

    Full text link
    Two spatially separate Bose-Einstein condensates were prepared in an optical double-well potential. A bidirectional coupling between the two condensates was established by two pairs of Bragg beams which continuously outcoupled atoms in opposite directions. The atomic currents induced by the optical coupling depend on the relative phase of the two condensates and on an additional controllable coupling phase. This was observed through symmetric and antisymmetric correlations between the two outcoupled atom fluxes. A Josephson optical coupling of two condensates in a ring geometry is proposed. The continuous outcoupling method was used to monitor slow relative motions of two elongated condensates and characterize the trapping potential.Comment: 4 pages, 5 figure

    Atom interferometry with Bose-Einstein condensates in a double-well potential

    Full text link
    A trapped-atom interferometer was demonstrated using gaseous Bose-Einstein condensates coherently split by deforming an optical single-well potential into a double-well potential. The relative phase between the two condensates was determined from the spatial phase of the matter wave interference pattern formed upon releasing the condensates from the separated potential wells. Coherent phase evolution was observed for condensates held separated by 13 μ\mum for up to 5 ms and was controlled by applying ac Stark shift potentials to either of the two separated condensates.Comment: 4 pages, 4 figure

    Bolometric and UV Light Curves of Core-Collapse Supernovae

    Get PDF
    The Swift UV-Optical Telescope (UVOT) has been observing Core-Collapse Supernovae (CCSNe) of all subtypes in the UV and optical since 2005. We present here 50 CCSNe observed with the Swift UVOT, analyzing their UV properties and behavior. Where we have multiple UV detections in all three UV filters (\lambda c = 1928 - 2600 \AA), we generate early time bolometric light curves, analyze the properties of these light curves, the UV contribution to them, and derive empirical corrections for the UV-flux contribution to optical-IR based bolometric light curves

    Distillation of Bose-Einstein condensates in a double-well potential

    Full text link
    Bose-Einstein condensates of sodium atoms, prepared in an optical dipole trap, were distilled into a second empty dipole trap adjacent to the first one. The distillation was driven by thermal atoms spilling over the potential barrier separating the two wells and then forming a new condensate. This process serves as a model system for metastability in condensates, provides a test for quantum kinetic theories of condensate formation, and also represents a novel technique for creating or replenishing condensates in new locations

    Low velocity quantum reflection of Bose-Einstein condensates

    Full text link
    We studied quantum reflection of Bose-Einstein condensates at normal incidence on a square array of silicon pillars. For incident velocities of 2.5-26 mm/s observations agreed with theoretical predictions that the Casimir-Polder potential of a reduced density surface would reflect slow atoms with much higher probability. At low velocities (0.5-2.5 mm/s), we observed that the reflection probability saturated around 60% rather than increasing towards unity. We present a simple model which explains this reduced reflectivity as resulting from the combined effects of the Casimir-Polder plus mean field potential and predicts the observed saturation. Furthermore, at low incident velocities, the reflected condensates show collective excitations.Comment: 4 figure

    Quantum reflection of atoms from a solid surface at normal incidence

    Full text link
    We observed quantum reflection of ultracold atoms from the attractive potential of a solid surface. Extremely dilute Bose-Einstein condensates of ^{23}Na, with peak density 10^{11}-10^{12}atoms/cm^3, confined in a weak gravito-magnetic trap were normally incident on a silicon surface. Reflection probabilities of up to 20 % were observed for incident velocities of 1-8 mm/s. The velocity dependence agrees qualitatively with the prediction for quantum reflection from the attractive Casimir-Polder potential. Atoms confined in a harmonic trap divided in half by a solid surface exhibited extended lifetime due to quantum reflection from the surface, implying a reflection probability above 50 %.Comment: To appear in Phys. Rev. Lett. (December 2004)5 pages, 4 figure
    • …
    corecore