95 research outputs found

    Emergent risks in the Mt. Everest region in the time of anthropogenic climate change

    Get PDF
    In April and May 2019, as a part of the National Geographic and Roxel Perpetual Planet Everest Expedition, the most interdisciplinary scientific ever was launched. This research identified changing dynamics, including emergent risks resulting from natural and anthropogenic change to the natural system. We have identified compounded risks to ecosystem and human health, geologic hazards, and changing climate conditions that impact the local community, climbers, and trekkeers in the future. This review brings together perspectives from across the biological, geological, and health sciences to better understand emergent risks on Mt. Everest and in the Khumbu region. Understanding and mitigating these risks is critical for the ~10,000 people living in the Khumbu region, as well as the thousands of visiting trekkers and the hundreds of climbers who attempt to summit each year.Comment: 21 pages, 2 figure

    An Overview of Physical Risks in the Mt. Everest Region

    Get PDF
    In April and May 2019, as part of National Geographic and Rolex's Perpetual Planet Everest Expedition, an interdisciplinary scientific effort conducted a suite of research on the mountain and recognized many changing dynamics, including emergent risks resulting from natural and anthropogenic changes to the biological system. In this paper, the diverse research teams highlight risks to ecosystem and human health, geologic hazards, and changing climbing conditions that may affect the local community, climbers, and trekkers in the future. This Primer brings together perspectives from across the atmospheric, biological, geological, and health sciences to better understand emergent risks on Mt. Everest and in the Khumbu region. Understanding these risks is critical for the ~10,000 people living in the Khumbu region, the thousands of visiting trekkers, and the hundreds of climbers who attempt to summit each year

    Ace Lake: three decades of research on a meromictic, Antarctic lake

    Get PDF
    Ace Lake (Vestfold Hills, Antarctica) has been investigated since the 1970s. Its close proximity to Davis Station has allowed year-long, as well as summer only, investigations. Ace Lake is a saline meromictic (permanently stratified) lake with strong physical and chemical gradients. The lake is one of the most studied lakes in continental Antarctica. Here we review the current knowledge of the history, the physical and chemical environment, community structure and functional dynamics of the mixolimnion, littoral benthic algal mats, the lower anoxic monimolimnion and the sediment within the monimolimnion. In common with other continental meromictic Antarctic lakes, Ace Lake possesses a truncated food web dominated by prokaryote and eukaryote microorganisms in the upper aerobic mixolimnion, and an anaerobic prokaryote community in the monimolimnion, where methanogenic Archaea, sulphate-reducing and sulphur-oxidizing bacteria occur. These communities are functional in winter at subzero temperatures, when mixotrophy plays an important role in survival in dominant photosynthetic eukaryotic microorganisms in the mixolimnion. The productivity of Ace Lake is comparable to other saline lakes in the Vestfold Hills, but higher than that seen in the more southerly McMurdo Dry Valley lakes. Finally we identify gaps in the current knowledge and avenues that demand further investigation, including comparisons with analogous lakes in the North Polar region

    Early diverging lineages within Cryptomycota and Chytridiomycota dominate the fungal communities in ice-covered lakes of the McMurdo Dry Valleys, Antarctica

    Get PDF
    Antarctic ice-covered lakes are exceptional sites for studying the ecology of aquatic fungi under conditions of minimal human disturbance. In this study, we explored the diversity and community composition of fungi in five permanently covered lake basins located in the Taylor and Miers Valleys of Antarctica. Based on analysis of the 18S rRNA sequences, we showed that fungal taxa represented between 0.93% and 60.32% of the eukaryotic sequences. Cryptomycota and Chytridiomycota dominated the fungal communities in all lakes; however, members of Ascomycota, Basidiomycota, Zygomycota, and Blastocladiomycota were also present. Of the 1313 fungal OTUs identified, the two most abundant, belonging to LKM11 and Chytridiaceae, comprised 74% of the sequences. Significant differences in the community structure were determined among lakes, water depths, habitat features (i.e., brackish vs. freshwaters), and nucleic acids (DNA vs. RNA), suggesting niche differentiation. Network analysis suggested the existence of strong relationships among specific fungal phylotypes as well as between fungi and other eukaryotes. This study sheds light on the biology and ecology of basal fungi in aquatic systems. To our knowledge, this is the first report showing the predominance of early diverging lineages of fungi in pristine limnetic ecosystems, particularly of the enigmatic phylum Cryptomycota.National Science Foundation/[PLR1439774]/NSF/Estados UnidosNational Science Foundation/[PLR1115245]/NSF/Estados UnidosNational Science Foundation/[PLR 1543537]/NSF/Estados UnidosNational Aeronautics and Space Administration/[NNH14ZDA001N-PSTAR]/NASA/Estados UnidosUCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de Biologí

    Antarctic Lake Systems and Climate Change

    No full text

    Bacteria in subglacial environments

    No full text
    • …
    corecore