215 research outputs found

    Multimodality Imaging in Ischemic Cardiomyopathy.

    Get PDF
    Cardiac multimodality (hybrid) imaging can be obtained from a variety of techniques, such as nuclear medicine with single photon emission computed tomography (SPECT) and positron emission tomography (PET), or radiology with multislice computed tomography (CT), magnetic resonance (MR) and echography. They are typically combined in a side-by-side or fusion mode in order to provide functional and morphological data to better characterise coronary artery disease, with more proven efficacy than when used separately. The gained information is then used to guide revascularisation procedures. We present an up-to-date comprehensive overview of multimodality imaging already in clinical use, as well as a combination of techniques with promising or developing applications

    Peritoneal Carcinomatosis in Primary Ovarian Cancer Staging: Comparison Between MDCT, MRI, and 18F-FDG PET/CT.

    Get PDF
    PURPOSE: The aim of this study was to compare multidetector CT (MDCT), MRI, and FDG PET/CT imaging for the detection of peritoneal carcinomatosis (PC) in ovarian cancer. PATIENTS AND METHODS: Fifteen women with ovarian cancer and suspected PC underwent MDCT, MRI, and FDG PET/CT, shortly before surgery. Nine abdominopelvic regions were defined according to the peritoneal cancer index. We applied lesion size scores on MDCT and MR and measured FDG PET/CT standard uptake. We blindly read MDCT, MR, and PET/CT before joint review and comparison with histopathology. Receiver operating characteristics analysis was performed. RESULTS: Ten women had PC (67%). Altogether, 135 abdominopelvic sites were compared. Multidetector CT, MRI, and FDG PET/CT had a sensitivity of 96%, 98%, and 95%, and specificity was 92%, 84%, and 96%, respectively. Corresponding receiver operating characteristics area was 0.94, 0.90, and 0.96, respectively, without any significant differences between them (P = 0.12). FDG PET/CT detected supradiaphragmatic disease in 3 women (20%) not seen by MDCT or MRI. CONCLUSIONS: Although MRI had the highest sensitivity and FDG PET/CT had the highest specificity, no significant differences were found between the 3 techniques. Thus, MDCT, as the fastest, most economical, and most widely available modality, is the examination of choice, if a stand-alone technique is required. If inconclusive, PET/CT or MRI may offer additional insights. Whole-body FDG PET/CT may be more accurate for supradiaphragmatic metastatic extension

    Performance of 18F-FET versus 18F-FDG-PET for the diagnosis and grading of brain tumors: systematic review and meta-analysis.

    Get PDF
    For the past decade (18)F-fluoro-ethyl-l-tyrosine (FET) and (18)F-fluoro-deoxy-glucose (FDG) positron emission tomography (PET) have been used for the assessment of patients with brain tumor. However, direct comparison studies reported only limited numbers of patients. Our purpose was to compare the diagnostic performance of FET and FDG-PET. We examined studies published between January 1995 and January 2015 in the PubMed database. To be included the study should: (i) use FET and FDG-PET for the assessment of patients with isolated brain lesion and (ii) use histology as the gold standard. Analysis was performed on a per patient basis. Study quality was assessed with STARD and QUADAS criteria. Five studies (119 patients) were included. For the diagnosis of brain tumor, FET-PET demonstrated a pooled sensitivity of 0.94 (95% CI: 0.79-0.98) and pooled specificity of 0.88 (95% CI: 0.37-0.99), with an area under the curve of 0.96 (95% CI: 0.94-0.97), a positive likelihood ratio (LR+) of 8.1 (95% CI: 0.8-80.6), and a negative likelihood ratio (LR-) of 0.07 (95% CI: 0.02-0.30), while FDG-PET demonstrated a sensitivity of 0.38 (95% CI: 0.27-0.50) and specificity of 0.86 (95% CI: 0.31-0.99), with an area under the curve of 0.40 (95% CI: 0.36-0.44), an LR+ of 2.7 (95% CI: 0.3-27.8), and an LR- of 0.72 (95% CI: 0.47-1.11). Target-to-background ratios of either FDG or FET, however, allow distinction between low- and high-grade gliomas (P > .11). For brain tumor diagnosis, FET-PET performed much better than FDG and should be preferred when assessing a new isolated brain tumor. For glioma grading, however, both tracers showed similar performances

    Myocardial blood flow quantification by Rb-82 cardiac PET/CT: A detailed reproducibility study between two semi-automatic analysis programs.

    Get PDF
    Several analysis software packages for myocardial blood flow (MBF) quantification from cardiac PET studies exist, but they have not been compared using concordance analysis, which can characterize precision and bias separately. Reproducible measurements are needed for quantification to fully develop its clinical potential. Fifty-one patients underwent dynamic Rb-82 PET at rest and during adenosine stress. Data were processed with PMOD and FlowQuant (Lortie model). MBF and myocardial flow reserve (MFR) polar maps were quantified and analyzed using a 17-segment model. Comparisons used Pearson's correlation ρ (measuring precision), Bland and Altman limit-of-agreement and Lin's concordance correlation ρc = ρ·C b (C b measuring systematic bias). Lin's concordance and Pearson's correlation values were very similar, suggesting no systematic bias between software packages with an excellent precision ρ for MBF (ρ = 0.97, ρc = 0.96, C b = 0.99) and good precision for MFR (ρ = 0.83, ρc = 0.76, C b = 0.92). On a per-segment basis, no mean bias was observed on Bland-Altman plots, although PMOD provided slightly higher values than FlowQuant at higher MBF and MFR values (P < .0001). Concordance between software packages was excellent for MBF and MFR, despite higher values by PMOD at higher MBF values. Both software packages can be used interchangeably for quantification in daily practice of Rb-82 cardiac PET

    Radiopharmaceuticals in the elderly cancer patient: Practical considerations, with a focus on prostate cancer therapy: A position paper from the International Society of Geriatric Oncology Task Force.

    Get PDF
    Molecular imaging using radiopharmaceuticals has a clear role in visualising the presence and extent of tumour at diagnosis and monitoring response to therapy. Such imaging provides prognostic and predictive information relevant to management, e.g. by quantifying active tumour mass using positron emission tomography/computed tomography (PET/CT). As these techniques require only pharmacologically inactive doses, age and potential frailty are generally not important. However, this may be different for therapy involving radionuclides because the radiation can impact normal bodily function (e.g. myelosuppression). Since the introduction of Iodine-131 as a targeted therapy in thyroid cancer, several radiopharmaceuticals have been widely used. These include antibodies and peptides targeting specific epitopes on cancer cells. Among therapeutic bone seeking agents, radium-223 ((223)Ra) stands out as it results in survival gains in patients with castration-resistant prostate cancer and symptomatic bone metastases. The therapeutic use of radiopharmaceuticals in elderly cancer patients specifically has received little attention. In elderly prostate cancer patients, there may be advantages in radionuclides' ease of use and relative lack of toxicity compared with cytotoxic and cytostatic drugs. When using radionuclide therapies, close coordination between oncology and nuclear medicine is needed to ensure safe and effective use. Bone marrow reserve has to be considered. As most radiopharmaceuticals are cleared renally, dose adjustment may be required in the elderly. However, compared with younger patients there is less, if any, concern about adverse long-term radiation effects such as radiation-induced second cancers. Issues regarding the safety of medical staff, care givers and the wider environment can be managed by current precautions

    Phantom Validation of Tc-99m Absolute Quantification in a SPECT/CT Commercial Device.

    Get PDF
    Aim. Similar to PET, absolute quantitative imaging is becoming available in commercial SPECT/CT devices. This study's goal was to assess quantitative accuracy of activity recovery as a function of image reconstruction parameters and count statistics in a variety of phantoms. Materials and Methods. We performed quantitative (99m)Tc-SPECT/CT acquisitions (Siemens Symbia Intevo, Erlangen, Germany) of a uniform cylindrical, NEMA/IEC, and an anthropomorphic abdominal phantom. Background activity concentrations tested ranged: 2-80 kBq/mL. SPECT acquisitions used 120 projections (20 s/projection). Reconstructions were performed with the proprietary iterative conjugate gradient algorithm. NEMA phantom reconstructions were obtained as a function of the iteration number (range: 4-48). Recovery coefficients, hot contrast, relative lung error (NEMA phantom), and image noise were assessed. Results. In all cases, absolute activity and activity concentration were measured within 10% of the expected value. Recovery coefficients and hot contrast in hot inserts did not vary appreciably with count statistics. RC converged at 16 iterations for insert size > 22 mm. Relative lung errors were comparable to PET levels indicating the efficient integration of attenuation and scatter corrections with adequate detector modeling. Conclusions. The tested device provided accurate activity recovery within 10% of correct values; these performances are comparable to current generation PET/CT systems

    Pulmonary Hypertension and Indicators of Right Ventricular Function.

    Get PDF
    Pulmonary hypertension (PH) is a rare disease, whose underlying mechanisms are not fully understood. It is characterized by pulmonary arterial vasoconstriction and vessels wall thickening, mainly intimal and medial layers. Several molecular pathways have been studied, but their respective roles remain unknown. Cardiac repercussions of PH are hypertrophy, dilation, and progressive right ventricular dysfunction. Multiple echocardiographic parameters are being used, in order to assess anatomy and cardiac function, but there are no guidelines edited about their usefulness. Thus, it is now recommended to associate the best-known parameters, such as atrial and ventricular diameters or tricuspid annular plane systolic excursion. Cardiac catheterization remains necessary to establish the diagnosis of PH and to assess pulmonary hemodynamic state. Concerning energetic metabolism, free fatty acids, normally used to provide energy for myocardial contraction, are replaced by glucose uptake. These abnormalities are illustrated by increased (18)F-fluorodeoxyglucose ((18)F-FDG) uptake on positron emission tomography/computed tomography, which seems to be correlated with echocardiographic and hemodynamic parameters

    Increased <sup>18</sup>F-FDG signal recovery from small physiological structures in digital PET/CT and application to the pituitary gland.

    Get PDF
    On conventional PET/CT, and under physiological conditions, the volume of the pituitary gland (PG) is small, and its metabolic activity is commonly comparable to the surrounding background level in &lt;sup&gt;18&lt;/sup&gt; F-FDG imaging. We compared the physiological &lt;sup&gt;18&lt;/sup&gt; F-FDG uptake of the PG in patients imaged with digital PET (dPET) and with conventional PET (cPET). Additionally, we performed phantom experiments to characterize signal recovery and detectability of small structures. We retrospectively included 10 dPET and 10 cPET patients and measured PG SUVmax, SUVmean and SUVratio (using cerebellum as reference). We imaged a modified NEMA/IEC phantom with both dPET and cPET (background activity 5 kBq/mL, and 3× and 5× higher concentrations in ∅2-20-mm spherical inserts). Mean recovery coefficients (RCmean) and signal-difference-to-noise-ratio (SDNR) were computed to assess lesion detectability. Patients imaged with dPET presented higher PG SUVmax and SUVratio (SUVR) compared to patients imaged with cPET (4.7 ± 2.05 vs. 2.9 ± 0.64, p = 0.004; and 0.62 ± 0.25 vs 0.39 ± 0.09, p = 0.029, respectively), while there was no difference for SUVmean (2.7 ± 1.32 vs 2.1 ± 0.44, p = 0.39). Thus, with a SUV readout scale of 0-5 g/mL, normal PG appeared abnormally hot with dPET, but not with cPET. Phantom evidenced higher RCmean in dPET compared to cPET. For both 3x and 5x measurements, lesion detectability according to size was systematically superior with dPET. In conclusion, patients imaged with dPET presented higher &lt;sup&gt;18&lt;/sup&gt; F-FDG physiological uptake of the PG as compared to patients imaged with cPET. These findings were supported by phantom experiments demonstrating superior signal recovery and small region detectability with dPET. Awareness of this new "higher" SUV of the normal &lt;sup&gt;18&lt;/sup&gt; F-FDG uptake of the PG is important to avoid potential pitfalls in image interpretation, notably in oncologic patients treated with immunotherapy, who are at increased risk to develop hypophysitis

    Initial Staging of Locally Advanced Rectal Cancer and Regional Lymph Nodes: Comparison of Diffusion-Weighted MRI With 18F-FDG-PET/CT.

    Get PDF
    The aim of the study was to compare diffusion-weighted MRI (DW-MRI) parameters with 18F-FDG PET/CT in primary locally advanced rectal cancer (LARC). From October 2012 to September 2014, 24 patients with histologically confirmed and untreated LARC (T3-T4) prospectively underwent a pelvic 1.5-T DW-MRI (b = 0 s/mm, b = 600 s/mm2) and a whole-body 18F-FDG PET/CT, before neoadjuvant therapy. The 2 examinations were performed on the same day. Two readers measured 18F-FDG SUVmax and SUVmean of the rectal tumor and of the pathological regional lymph nodes on PET/CT and compared these with minimum and mean values of the ADC (ADCmin and ADCmean) on maps generated from DW-MRI. The diagnostic performance of ADC values in identifying pathological lymph nodes was also assessed. Regarding tumors (n = 24), we found a significant negative correlation between SUVmean and corresponding ADCmean values (ρ = -0.61, P = 0.0017) and between ADCmin and SUVmax (ρ = -0.66, P = 0.0005). Regarding the lymph nodes (n = 63), there was a significant negative correlation between ADCmean and SUVmean values (ρ = -0.38, P = 0.0021), but not between ADCmin and SUVmax values (ρ = -0.11, P = 0.41). Neither ADCmean nor ADCmin values helped distinguish pathological from benign lymph nodes (AUC of 0.24 [confidence interval, 0.10-0.38] and 0.41 [confidence interval, 0.22-0.60], respectively). The correlations between ADCmean and SUVmean suggest an association between tumor cellularity and metabolic activity in untreated LARC and in regional lymph nodes. However, compared with 18F-FDG PET/CT, ADC values are not reliable for identifying pathological lymph nodes
    corecore