13 research outputs found

    N-terminal probrain natriuretic peptide is a stronger predictor of cardiovascular mortality than C-reactive protein and albumin excretion rate in elderly patients with type 2 diabetes: the Casale Monferrato population-based study.

    Get PDF
    OBJECTIVE: To study whether N-terminal probrain natriuretic peptide (NT-proBNP) is a short-term independent predictor of both all-cause and cardiovascular (CV) mortality in type 2 diabetic patients and to establish whether albuminuria and C-reactive protein (CRP) affect this relationship. RESEARCH DESIGN AND METHODS: The prospective study included 1,825 type 2 diabetic patients from the population-based cohort of the Casale Monferrato study. CV risk factors, preexisting CVD, and NT-proBNP levels were evaluated at baseline. All-cause and CV mortality were assessed 5.5 years after baseline examination. Multivariate Cox proportional hazards modeling was used to estimate mortality hazard ratios (HRs). RESULTS: During the follow-up period, 390 people died (175 for CVD) out of 9,101 person-years of observations. A significantly increased mortality risk by quartiles of NT-proBNP was observed (test for trend, P < 0.001). NT-proBN P values >91 pg/mL conferred HRs of 2.05 (95% CI 1.47–2.86) for all-cause and 4.47 (2.38–8.39) for CV mortality, independently of CV risk factors, including CRP and albumin excretion rate (AER). The association was also significant for modest rises in NT-proBNP levels and in patients without microalbuminuria and CVD at baseline (upper quartiles HRs 3.82 [95% CI 1.24–13.75]) and 3.14 [1.00–9.94]). Albuminuria and NT-proBNP had an additive effect on mortality, though the association was stronger for NT-proBNP. CONCLUSIONS: NT-proBNP is a strong independent predictor of short-term CV mortality risk in elderly people with type 2 diabetes, including those without preexisting CVD. This association is evident even in people with slightly increased values, is not modified by CRP, and is additive to that provided by AER

    Inactivation of Mycobacterium tuberculosis mannosyltransferase pimB reduces the cell wall lipoarabinomannan and lipomannan content and increases the rate of bacterial-induced human macrophage cell death

    No full text
    The Mycobacterium tuberculosis (M.tb) cell wall contains an important group of structurally related mannosylated lipoglycans called phosphatidyl-myo-inositol mannosides (PIMs), lipomannan (LM), and mannose-capped lipoarabinomannan (ManLAM), where the terminal α-[1→2] mannosyl structures on higher order PIMs and ManLAM have been shown to engage C-type lectins such as the macrophage mannose receptor directing M.tb phagosome maturation arrest. An important gene described in the biosynthesis of these molecules is the mannosyltransferase pimB (Rv0557). Here, we disrupted pimB in a virulent strain of M.tb. We demonstrate that the inactivation of pimB in M.tb does not abolish the production of any of its cell wall mannosylated lipoglycans; however, it results in a quantitative decrease in the ManLAM and LM content without affecting higher order PIMs. This finding indicates gene redundancy or the possibility of an alternative biosynthetic pathway that may compensate for the PimB deficiency. Furthermore, infection of human macrophages by the pimB mutant leads to an alteration in macrophage phenotype concomitant with a significant increase in the rate of macrophage death

    Effects of Mycobacterium bovis BCG Infection on Regulation of l-Arginine Uptake and Synthesis of Reactive Nitrogen Intermediates in J774.1 Murine Macrophages

    No full text
    The generation of nitric oxide (NO) by activated macrophages is believed to control mycobacterial infection in the murine system. In this study we examined the effect of Mycobacterium bovis BCG infection on the l-arginine-dependent NO pathway in J774.1 murine macrophages. We have confirmed previous results by demonstrating that stimulation of J774.1 with lipopolysaccharide (LPS) and gamma interferon (IFN-γ) results in an increase in the uptake of (3)H-labeled l-arginine and a concomitant increase in the production of NO. We have also shown that BCG can mimic LPS treatment, leading to enhanced l-[(3)H]arginine uptake by IFN-γ-stimulated macrophages. Lipoarabinomannan, a component of the BCG cell wall that is structurally similar to LPS, is not responsible for the uptake stimulation in IFN-γ stimulated macrophages. Although we demonstrated that there was a 2.5-fold increase in NO production by macrophages 4 h after LPS–IFN-γ stimulation, BCG infection (with or without IFN-γ stimulation) did not lead to the production of NO by the macrophages by 4 h postinfection. At 24 h postinfection, the infected macrophages that were stimulated with IFN-γ produced amounts of NO similar to those of macrophages stimulated with LPS–IFN-γ. This suggests that there are multiple regulatory pathways involved in the production of NO. Finally, our data suggest that increased expression of the arginine permease, MCAT2B, after 4 h of LPS–IFN-γ treatment or BCG infection–IFN-γ treatment is not sufficient to account for the increases in l-[(3)H]arginine uptake detected. This suggests that the activity of the l-arginine transporter(s) is also altered in response to macrophage activation

    Entry of Mycobacterium tuberculosis into Mononuclear Phagocytes

    No full text
    corecore