4 research outputs found
Dried Blood Spot Analysis: An Easy And Reliable Tool To Monitor The Biochemical Effect Of Hematopoietic Stem Cell Transplantation In Hurler Syndrome Patients In A Multi-Center International Setting
Digitalitzat per Artypla
A 2D-DIGE approach to identify proteins involved in inside-out control of integrins.
Leukocyte integrins are functionally regulated by "inside-out" signaling, meaning that stimulus-induced signaling pathways act on the intracellular integrin tail and induce activation of the receptor at the outside. Both a change in conformation (affinity) and in clustering (avidity/valency) of the receptors has been described to occur. This inside-out signaling is essential for adequate migration of leukocytes to inflammatory sites; however, the exact underlying mechanism is not known. We used two variants of a mouse acute lymphocytic leukemia cell line (L1210), a suspension (L1210-S) and an adherent (L1210-A) variant that were characterized by nonactivated and activated integrins (beta(1), beta(2) and beta(3)), respectively. L1210-S and L1210-A cells were compared on protein expression profiles by two-dimensional fluorescence difference in-gel electrophoresis (2D-DIGE). We found 86 protein spots that were more than 1.25-fold different between L1210-A and L1210-S. Only 4 protein spots were more than 2.5-fold different. We identified 29 proteins by mass spectrometry among which were gelsolin, L-plastin, and Rho GTPase dissociation inhibitor 2. These proteins were upregulated in the L1210-A cells versus L1210-S, which was verified by Western blot analysis. Overexpression of gelsolin in U937 resulted in increased high affinity integrin expression and cell adhesion. Comparison of functionally different cell lines from similar origin by 2D-DIGE might be a successful approach to identify regulatory proteins involved in integrin inside-out control
Liquid chromatography-tandem mass spectrometry assay for the quantification of free and total sialic acid in human cerebrospinal fluid.
Contains fulltext :
87264.pdf (publisher's version ) (Closed access)BACKGROUND: Analysis of sialic acid (SA) metabolites in cerebrospinal fluid (CSF) is important for clinical diagnosis. In the present study, a high-performance liquid chromatography-tandem mass spectrometry (HPLC/MS/MS) method for free sialic acid (FSA) and total sialic acid (TSA) in human CSF was validated. METHODS: The method utilized a simple sample-preparation procedure of protein precipitation for FSA and acid hydrolysis for TSA. Negative electrospray ionisation was used to monitor the transitions m/z 308.2-->87.0 (SA) and m/z 311.2--> 90.0 ((13)C(3)-SA). Conjugated sialic acid (CSA) was calculated by subtracting FSA from TSA. We established reference intervals for FSA, TSA and CSA in CSF in 217 control subjects. The method has been applied to patients' samples with known differences in SA metabolites like meningitis (n=6), brain tumour (n=2), leukaemia (n=5), and Salla disease (n=1). RESULTS: Limit of detection (LOD) was 0.54 microM for FSA and 0.45 mM for TSA. Intra- and inter-assay variation for FSA (21.8 microM) were 4.8% (n=10) and 10.4% (n=40) respectively. Intra- and inter-assay variation for TSA (35.6 microM) were 9.7% (n=10) and 12.8% (n=40) respectively. Tested patients showed values of TSA above established reference value. CONCLUSION: The validated method allows sensitive and specific measurement of SA metabolites in CSF and can be applied for clinical diagnoses