55 research outputs found
Identification of Thai cassava cultivars using SCAR markers and multiplex PCR
āļāļāļāļąāļāļĒāđāļ āļĄāļąāļāļŠāļģāļāļ°āļŦāļĨāļąāļāđāļāđāļāļāļ·āļāđāļĻāļĢāļĐāļāļāļīāļāļāļĩāđāļĄāļĩāļāļ§āļēāļĄāļŠāļģāļāļąāļ āđāļĨāļ°āļĄāļĩāļāļēāļĢāļāļąāļāđāļĨāļ·āļāļāļāļąāļāļāļļāđāļāļĨāļđāļāļāļĩāđāļĄāļĩāđāļāļāļĢāđāđāļāđāļāļāđāđāļāđāļāļŠāļđāļāđāļāļ·āđāļāļāļļāļāļŠāļēāļŦāļāļĢāļĢāļĄ āđāļāđāļāļąāļāļāļļāđāļāļĨāļđāļāļāļĩāđāđāļāđāļĢāļąāļāļāļēāļĢāļāļąāļāļāļēāļāļēāļāļĄāļĩāļĨāļąāļāļĐāļāļ°āļŠāļąāļāļāļēāļāļ§āļīāļāļĒāļēāļāļĨāđāļēāļĒāļāļĨāļķāļāļāļąāļ āļāļąāļāļāļąāđāļāļāļēāļĢāļāļģāđāļāļāļāļąāļāļāļļāđāļāļĨāļđāļāļāļķāļāļāđāļāļāļāļēāļĻāļąāļĒāļāļļāļāļĨāļēāļāļĢāļāļĩāđāļĄāļĩāļāļ§āļēāļĄāļāļģāļāļēāļ āļāļēāļĢāļĻāļķāļāļĐāļēāļāļĩāđāļĄāļĩāļ§āļąāļāļāļļāļāļĢāļ°āļŠāļāļāđāđāļāļ·āđāļāļāļąāļāļāļēāđāļāļĢāļ·āđāļāļāļŦāļĄāļēāļĒāđāļĄāđāļĨāļāļļāļĨāļŠāļģāļŦāļĢāļąāļāļĢāļ°āļāļļāļāļąāļāļāļļāđāļāļĨāļđāļāļāļāļāļĄāļąāļāļŠāļģāļāļ°āļŦāļĨāļąāļāđāļāļĒāļāļģāļāļ§āļ 16 āļāļąāļāļāļļāđāļāļĨāļđāļāļāļĩāđāđāļāđāļāļēāļāđāļŦāļĨāđāļāđāļāļ·āđāļāļāļąāļāļāļļāļāļĢāļĢāļĄāđāļāļĻāļđāļāļĒāđāļ§āļīāļāļąāļĒāļāļ·āļāđāļĢāđāļĢāļ°āļĒāļāļ āđāļāļĒāļāļģāđāļāļāļāļĩāđāļāđāļāđāļāļāļķāđāļāļĄāļĩāļāļ§āļēāļĄāđāļāļāļāđāļēāļāļāļąāļāđāļāļāļąāļāļāļļāđāļāļĨāļđāļāļāđāļēāļāđ āļāļĩāđāđāļāđāļāļēāļāļāļēāļĢāļāļģ HAT-RAPD āļĄāļēāđāļāļĨāļāđāļĨāļ°āļŦāļēāļĨāļģāļāļąāļāļāļīāļ§āļāļĨāļĩāđāļāđāļāļāđ āđāļāļ·āđāļāļāļāļāđāļāļāđāļāļĢāđāļĄāļāļĢāđāļŠāļģāļŦāļĢāļąāļ SCAR āļāļĩāđāļĄāļĩāļāļ§āļēāļĄāļāļģāđāļāļēāļ°āļāļģāļāļ§āļ 4 āļāļđāđ āđāļāļĒ SCAR marker āļāļĩāđāđāļāđāļŠāļēāļĄāļēāļĢāļāđāļāđāļāļģāđāļāļāļāļąāļāļāļļāđāļāļĨāļđāļāļāļāļāļĄāļąāļāļŠāļģāļāļ°āļŦāļĨāļąāļāđāļāđ āļāļąāļāļāļĩāđ (1) 308-bp marker āđāļĨāļ° 850-bp marker āđāļāđāļĢāļ°āļāļļāļāļąāļāļĨāļąāļāļĐāļāđāļāļāļāļāļąāļāļāļļāđāļāļĨāļđāļāļĢāļ°āļĒāļāļ 60 āđāļĨāļ°āļŦāđāļēāļāļēāļāļĩ āļāļēāļĄāļĨāļģāļāļąāļ (2) 414-bp marker āđāļāđāļĢāļ°āļāļļāļāļĨāļļāđāļĄāļāļąāļāļāļļāđāļāļĨāļđāļāļĢāļ°āļĒāļāļ 1 āļĢāļ°āļĒāļāļ 11 āļĢāļ°āļĒāļāļ 90 āļĢāļ°āļĒāļāļ 86-13 āļŦāđāļ§āļĒāļāļ 60 āđāļĨāļ°āđāļāļĐāļāļĢāļĻāļēāļŠāļāļĢāđ 50 (3) 273-bp marker āđāļāđāļĢāļ°āļāļļāļāļĨāļļāđāļĄāļāļąāļāļāļļāđāļāļĨāļđāļāļĢāļ°āļĒāļāļ 3 āļĢāļ°āļĒāļāļ 9 āđāļĨāļ°āļĢāļ°āļĒāļāļ 72 āđāļĨāļ° (4) 414-bp marker āđāļĨāļ° 273-bp marker āđāļāđāļĢāļ°āļāļļāļāļĨāļļāđāļĄāļāļąāļāļāļļāđāļāļĨāļđāļāļĢāļ°āļĒāļāļ 5 āđāļĨāļ°āļŦāđāļ§āļĒāļāļ 80 āļāļāļāļāļēāļāļāļĩāđ āļĒāļąāļāđāļāđāļĄāļĩāļāļēāļĢāļāļąāļāļāļēāđāļāļāļāļīāļ multiplex PCR āļāļĩāđāđāļŦāļĄāļēāļ°āļŠāļĄāļāļąāļāļāļēāļĢāđāļāđāđāļāļĢāđāļĄāļāļĢāđāļŠāļģāļŦāļĢāļąāļ SCAR āļāļĢāđāļāļĄāļāļąāļāļāļąāđāļ 4 āļāļđāđāđāļāļŦāļāļķāđāļāļāļāļīāļāļīāļĢāļīāļĒāļē āđāļāļ·āđāļāđāļŦāđāļāļēāļĢāļāļĢāļ§āļāļŠāļāļāļāļĩāđāļāđāļāđāļāđāļāđāļēāļŦāļĄāļēāļĒāļĄāļĩāļāļ§āļēāļĄāļĢāļ§āļāđāļĢāđāļ§āđāļĨāļ°āļāļĢāļ°āļŦāļĒāļąāļāļĒāļīāđāļāļāļķāđāļÂ ABSTRACT Â Cassava is an important economic crop which has been artificially selected to improve cultivars with high industrial yield of starch. Based on their morphoagronomic descriptors however, several improved cultivars are similar. Hence, accurate identification of each cultivar requires well-trained personnel. This study aimed to establish molecular markers for the identification of 16 Thai cassava cultivars from the germplasm collection in Rayong Field Crops Research Center. HAT-RAPD amplicons which were distinctive among the cultivars were employed for molecular cloning. Based on nucleotide sequences obtained four SCAR primer pairs were designed. SCAR markers were generated and used to differentiate the cultivars as follows: (1) 308-bp marker and 850-bp marker for Rayong 60 and Hanatee, respectively; (2) 414-bp marker for Rayong 1, Rayong 11, Rayong 90, Rayong 86-13, Huay Bong 60 and Kasetsart 50; (3) 273-bp marker for Rayong 3, Rayong 9 and Rayong 72; and (4) 414-bp and 273-bp markers for Rayong 5 and Huay Bong 80. For the procedure to be less time-consuming and more cost-effective, efficient multiplex PCR with optimal conditions was developed to incorporate all four pairs of SCAR primers in a single PCR reaction
Species identification of economic bamboos in the genus Dendrocalamus using SCAR and multiplex PCR
Taxonomic and systematic studies of bamboos are traditionally based on floral morphology, but this can lead to
difficulties in identification because of the irregular reproductive cycle of the bamboos. To overcome such problems several
molecular-marker approaches have been used. In this study, eight species of the woody bamboos belonging to the genus
Dendrocalamus were employed. For each species, DNA samples of 20 individual plants from different localities were isolated
and then pooled to make eight bulks of DNA. Fifty RAPD primers were used to screen all bulked DNA samples. Only five
primers yielded consistent and reproducible RAPD band patterns across all 160 individuals. The amplicons were present among
five species of Dendrocalamus, but were absent in the other three species. They were cloned, sequenced and subsequently, five
pairs of SCAR primers were designed. All SCAR primers were combined in multiplex PCR reactions to unequivocally
discriminate five species of Dendrocalamus
Antioxidant, Antibacterial and Anti-alpha Glucosidase Activities of Coral Mushroom Ramaria spp.
āļāļāļāļąāļāļĒāđāļ  āđāļŦāđāļāļāļ°āļāļēāļĢāļąāļāļŠāļāļļāļĨ Ramaria āļāļģāļāļ§āļ 10 āļāļąāļ§āļāļĒāđāļēāļ āļāļąāļāļāļģāđāļāļāļāļāļīāļāļāļēāļĄāļĨāļąāļāļĐāļāļ°āļāļēāļāļŠāļąāļāļāļēāļāļ§āļīāļāļĒāļēāđāļāđ 9 āļŠāļāļĩāļāļĩāļŠāđ āļāļąāļāļāļĩāđ Ramaria aff. vinosimaculans (PKWS15-74 āđāļĨāļ° PKWS15-109), R. flava var. aurea (PKWS15-173), Ramaria sp.1 (PKWS15-92), Ramaria sp.2 (PKWS15-95), Ramaria sp.3 (PKWS15-164), Ramaria sp.4 (PKWS15-181), Ramaria sp.5 (PKWS15-194), Ramaria sp.6 (PKWS15-221) āđāļĨāļ° Ramaria sp.7 (PKWS14-02) āđāļĄāļ·āđāļāļāļģāļĄāļēāļŠāļāļąāļāļāđāļ§āļĒāļŠāļēāļĢāļĨāļ°āļĨāļēāļĒāđāļāļāļēāļāļāļĨāđāļĨāļ°āļāļāļŠāļāļāļāļļāļāļŠāļĄāļāļąāļāļīāļāļēāļāļāļĩāļ§āļ āļēāļāļāļāļ§āđāļēāļŠāļēāļĢāļŠāļāļąāļāļāļēāļāđāļŦāđāļāļāļļāļāļāļąāļ§āļāļĒāđāļēāļāļĄāļĩāļāļĢāļ°āļŠāļīāļāļāļīāļ āļēāļāđāļāļāļēāļĢāļāđāļēāļāļāļāļļāļĄāļđāļĨāļāļīāļŠāļĢāļ°āļāļĩāđāļāļĩāđāļāļĒāđāļāļāļēāļ° PKWS15-164 āļāļķāđāļāļĄāļĩāļāđāļēāđāļāļĨāđāđāļāļĩāļĒāļāļāļąāļ positive control āļāļāļāļāļēāļāļāļĩāđāļĒāļąāļāļāļĢāļ§āļāļāļāļŠāļēāļĢāļāļĨāļēāđāļ§āļāļāļĒāļāđāđāļĨāļ°āļŠāļēāļĢāļāļĢāļ°āļāļāļāļāļĩāļāļāļĨāđāļāļāļĢāļīāļĄāļēāļāļāļĩāđāļŠāļđāļ āđāļāđāļ PKWS15-164 (3,909.52Âą58.56 g QE/g extract) āđāļĨāļ° PKWS15-194 (3,765.88Âą33.75 g QE/g extract) āļāļķāđāļāļŠāļāļāļāļĨāđāļāļāļāļąāļāļāļĢāļ°āļŠāļīāļāļāļīāļ āļēāļāđāļāļāļēāļĢāļāđāļēāļāļāļāļļāļĄāļđāļĨāļāļīāļŠāļĢāļ° āļāļąāđāļāļāļĩāđāđāļāļ·āđāļāļāļāļēāļāļŠāļēāļĢāļāļĨāļēāđāļ§āļāļāļĒāđāđāļāđāļāļŠāļēāļĢāļāđāļēāļāļāļāļļāļĄāļđāļĨāļāļīāļŠāļĢāļ°āļāļĩāđāļāļĩ āļŠāđāļ§āļāļāļĢāļ°āļŠāļīāļāļāļīāļ āļēāļāđāļāļāļēāļĢāļĒāļąāļāļĒāļąāđāļāļāļēāļĢāđāļāļĢāļīāļāļāļāļāđāļāļāļāļĩāđāļĢāļĩāļĒāļāļāļ§āđāļēāļŠāļēāļĢāļŠāļāļąāļāļŠāđāļ§āļāđāļŦāļāđāļŠāļēāļĄāļēāļĢāļāļĒāļąāļāļĒāļąāđāļāļāļēāļĢāđāļāļĢāļīāļāļāļāļ Staphylococcus aureus āđāļāđāļĄāļēāļāļāļĩāđāļŠāļļāļāļĢāļāļāļĨāļāļĄāļēāļāļ·āļ Escherichia coli, Bacillus subtilis āđāļĨāļ° Pseudomonas aeruginosa āļāļēāļĄāļĨāļģāļāļąāļ āļāļāļāļāļēāļāļāļĩāđāļĒāļąāļāļāļāļ§āđāļēāļŠāļēāļĢāļŠāļāļąāļāļāļēāļāđāļŦāđāļ PKWS15-181 (IC50 = 0.216 Âą0.026 mg/mL) āđāļĨāļ° PKWS15-194 (IC50 = 12.908 Âą0.110 mg/mL) āļĄāļĩāļāļĢāļ°āļŠāļīāļāļāļīāļ āļēāļāđāļāļāļēāļĢāļĒāļąāļāļĒāļąāđāļāļāļēāļĢāļāļģāļāļēāļāļāļāļāđāļāļāđāļāļĄāđ alpha-glucosidase āđāļāđāļāļĩāđāļĄāđāļāđāļēāļāļāļēāļāļĒāļē acarbose (IC50 = 33.782 Âą0.523 mg/mL) āļāļĩāđāđāļāđāļĢāļąāļāļĐāļēāđāļĢāļāđāļāļēāļŦāļ§āļēāļāļāļĒāđāļēāļāļĄāļĩāļāļąāļĒāļŠāļģāļāļąāļāļāļēāļāļŠāļāļīāļāļīāļāļĩāļāļāđāļ§āļĒ āļāđāļāļĄāļđāļĨāļāļĩāđāđāļāđāļāļēāļāļāļēāļāļ§āļīāļāļąāļĒāļāļĩāđāđāļŠāļāļāđāļŦāđāđāļŦāđāļāļ§āđāļēāđāļŦāđāļāļāļ°āļāļēāļĢāļąāļ Ramaria āļŠāļēāļĄāļēāļĢāļāđāļāđāđāļāđāļāđāļŦāļĨāđāļāļāļĨāļīāļāļŠāļēāļĢāļāđāļēāļāļāļāļļāļĄāļđāļĨāļāļīāļŠāļĢāļ° āļŠāļēāļĢāļāđāļēāļāļāļēāļĢāđāļāļĢāļīāļāļāļāļāđāļāļāļāļĩāđāļĢāļĩāļĒ āđāļĨāļ°āļŠāļēāļĢāļĨāļāļāļĢāļīāļĄāļēāļāļāđāļģāļāļēāļĨāļāļĩāđāļĄāļĩāļāļĢāļ°āļŠāļīāļāļāļīāļ āļēāļāđāļŦāļĨāđāļāđāļŦāļĄāđāđāļāđāđāļāļāļāļēāļāļ āļāļģāļŠāļģāļāļąāļ: āđāļŦāđāļāļāļ°āļāļēāļĢāļąāļ āļāļĨāļēāđāļ§āļāļāļĒāļāđ āļŠāļēāļĢāļāđāļēāļāļāļāļļāļĄāļđāļĨāļāļīāļŠāļĢāļ° āļŠāļēāļĢāļāđāļēāļāļāļļāļĨāļīāļāļāļĢāļĩāļĒāđ āđāļāļēāļŦāļ§āļēāļ ABSTRACT  Ten collections of coral mushroom genus Ramaria were identified to 9 species based on the morphological characteristics i.e. Ramaria aff. vinosimaculans (PKWS15-74 āđāļĨāļ° PKWS15-109), R. flava var. aurea (PKWS15-173), Ramaria sp.1 (PKWS15-92), Ramaria sp.2 (PKWS15-95), Ramaria sp.3 (PKWS15-164), Ramaria sp.4 (PKWS15-181), Ramaria sp.5 (PKWS15-194), Ramaria sp.6 (PKWS15-221) and Ramaria sp.7 (PKWS14-02). The Ramaria samples were then extracted with ethanol and screened for the bioactivities. The results showed that all extracts contained high antioxidant activity especially PKWS15-164. They were detected high number of flavonoids and total phenolic contents such as PKWS15-164 (3,909.52Âą58.56 g QE/g extract) and PKWS15-194 (3,765.88Âą33.75 g QE/g extract), which supported their results of antioxidant activity. Flavonoids are phenolic substances that act as antioxidants. The results of antibacterial activity revealed that most Ramaria extracts could inhibit the growth of Staphylococcus aureus followed by Escherichia coli, Bacillus subtilis and Pseudomonas aeruginosa, respectively. Moreover, the extracts of PKWS15-181 (IC50 = 0.216Âą0.026 mg/mL) and PKWS15-194 (IC50 = 12.908Âą0.110 mg/mL) exhibited high alpha-glucosidase inhibitory potential, which were not significantly different from diabetes mellitus drug as well as acarbose (IC50 = 33.782 Âą0.523 mg/mL). The results from this study indicated that the coral mushroom Ramaria species are new potential source of antioxidant, antibacterial and anti-alpha glucosidase activities in future.  Keywords: Coral mushroom, Flavonoids, Antioxidants, Antimicrobial activity, Diabetes mellitu
Isolation of Bacteriophages Specific to a Fish Pathogen, Aeromonas spp., as a Candidate for Disease Control
āļāļāļāļąāļāļĒāđāļ  āļāļēāļĢāđāļāđāđāļāļāđāļāļāļēāļĢāļĢāļąāļāļĐāļēāļāļēāļĢāļāļīāļāđāļāļ·āđāļāļāļ·āļāđāļāđāļāļāļēāļāđāļĨāļ·āļāļāļŦāļāļķāđāļāļāļĩāđāđāļāđāļāđāļāļāļāļąāļāđāļĨāļ°āļāļ§āļāļāļļāļĄāđāļĢāļāļāļīāļāđāļāļ·āđāļāļāļēāļāđāļāļāļāļĩāđāļĢāļĩāļĒāđāļāļāļļāļāļŠāļēāļŦāļāļĢāļĢāļĄāļāļēāļĢāđāļāļēāļ°āđāļĨāļĩāđāļĒāļāļŠāļąāļāļ§āđāļāđāļģ āļāļĒāđāļēāļāđāļĢāļāđāļāļēāļĄāļāļēāļĢāļāļĢāļ°āļĒāļļāļāļāđāđāļāđāđāļāļāđāļāļāļēāļĢāļāļ§āļāļāļļāļĄāļāļēāļĢāļāļīāļāđāļāļ·āđāļ Aeromonas spp. āļĒāļąāļāļĄāļĩāđāļĄāđāļĄāļēāļāļāļąāļ āļāļąāļāļāļąāđāļāļāļļāļāļāļĢāļ°āļŠāļāļāđāļāļāļāļāļēāļāļ§āļīāļāļąāļĒāļāļĩāđāļāļ·āļāļāļēāļĢāđāļĒāļāđāļāļāļāļĢāļ°āđāļ āļāļāļĩāđāļāļģāđāļŦāđāđāļāļīāļāļāļēāļĢāđāļāļāļŠāļĨāļēāļĒāđāļāļ·āđāļāļāļ§āļāļāļļāļĄāđāļāļ·āđāļ Aeromonas spp. āđāļĨāļ°āļāļĢāļ°āđāļĄāļīāļāļāļĢāļ°āļŠāļīāļāļāļīāļ āļēāļāđāļāļāļēāļĢāđāļāđāđāļāļāđāļāļ·āđāļāļāļ§āļāļāļļāļĄāđāļāļ·āđāļ Aeromonas spp. āđāļāļĢāļ°āļāļąāļāļŦāđāļāļāļāļāļīāļāļąāļāļīāļāļēāļĢ āļāļēāļāļāļąāļ§āļāļĒāđāļēāļāļāđāļģāļāļĨāļāļāļāļģāļāļ§āļ 10 āđāļŦāļĨāđāļ āļŠāļēāļĄāļēāļĢāļāđāļĒāļāđāļāļ·āđāļ Aeromonas spp. āđāļāđāđāļāļĩāļĒāļāļŠāļēāļĒāļāļąāļāļāļļāđāđāļāļĩāļĒāļ§āļāļ·āļ Aeromonas sp. OG-H āđāļĨāļ°āļāļģāļĄāļēāđāļāđāđāļāđāļāđāļŪāļŠāļāđāđāļāļ·āđāļāđāļāđāđāļāļāļēāļĢāđāļĒāļāđāļāļ āđāļāļĒāļŠāļēāļĄāļēāļĢāļāđāļĒāļāđāļāļāđāļāđ 2 āļāļąāļ§āļāļĩāđāđāļāļāļāđāļēāļāļāļąāļāđāļĨāļ°āđāļŦāđāļāļ·āđāļāļ§āđāļē FOG1 āđāļĨāļ° FOG3 āļāļēāļāļāļēāļĢāļāļĢāļ§āļāļāļđāļĢāļđāļāļĢāđāļēāļāļāļāļāđāļāļāļ āļēāļĒāđāļāđāļāļĨāđāļāļāļāļļāļĨāļāļĢāļĢāļĻāļāđāļāļīāđāļĨāđāļāļāļĢāļāļāđāļāļāļŠāđāļāļāļāđāļēāļāļāļāļ§āđāļē āđāļāļāļāļąāđāļ 2 āļāļąāļ§āļāļąāļāļāļĒāļđāđāđāļāđāļāļĄāļīāļĨāļĩ Myoviridae āđāļāļāļāļąāđāļāļŠāļāļāļāļąāļ§āļŠāļēāļĄāļēāļĢāļāļāļīāļāđāļāļ·āđāļāđāļāđāđāļ Aeromonas sp. OG-H āđāļāļĩāļĒāļāļŠāļēāļĒāļāļąāļāļāļļāđāđāļāļĩāļĒāļ§ āđāļĨāļ°āļĄāļĩāļāļ§āļēāļĄāđāļŠāļāļĩāļĒāļĢāļāđāļ pH āđāļĨāļ°āļāļļāļāļŦāļ āļđāļĄāļī āđāļāļāđāļ§āļ 4.0-11.0 āđāļĨāļ° 30-65 āļāļāļĻāļēāđāļāļĨāđāļāļĩāļĒāļŠ āļāļēāļĄāļĨāļģāļāļąāļ āđāļĄāļ·āđāļāļāļģāļĄāļēāļāļāļŠāļāļāļāļēāļĢāļāļ§āļāļāļļāļĄāđāļāļ·āđāļ Aeromonas sp. OG-H āđāļāļĢāļ°āļāļąāļāļŦāđāļāļāļāļāļīāļāļąāļāļīāļāļēāļĢāļāļāļ§āđāļē āļāļēāļĢāļāļāļĨāļāļāļāļĩāđāļĄāļĩāļāļēāļĢāđāļāļīāļĄāđāļāļāļāđāļāļāļāļēāļĢāđāļāļīāļĄāđāļāļ·āđāļāļāļ°āļŠāļēāļĄāļēāļĢāļāļĨāļāļāļģāļāļ§āļāđāļāļ·āđāļāđāļāđāđāļāļāđāļ§āļ 12 āļāļąāđāļ§āđāļĄāļāđāļĢāļāļāļĒāđāļēāļāđāļŦāđāļāđāļāđāļāļąāļ āļāļēāļāļāđāļāļĄāļđāļĨāļāļĩāđāđāļāđāļāļĩāđāđāļŦāđāđāļŦāđāļāļ§āđāļēāđāļāļ āļāļąāđāļāļŠāļāļāļāļąāļ§āļĄāļĩāļāļĢāļ°āļŠāļīāļāļāļīāļ āļēāļāđāļāļāļēāļĢāļāļģāđāļāđāļāđāđāļāļāļēāļĢāļāļ§āļāļāļļāļĄāļāļēāļĢāļāļīāļāđāļāļ·āđāļ Aeromonas āđāļāđ  āļāļģāļŠāļģāļāļąāļ: Aeromonas āđāļāļāđāļāļāļĢāļīāđāļāđāļāļ āļāļ§āļēāļĄāđāļŠāļāļĩāļĒāļĢāļāđāļāļāļļāļāļŦāļ āļđāļĄāļī āļāļ§āļēāļĄāđāļŠāļāļĩāļĒāļĢāļāđāļ pH  ABSTRACT Phage therapy can be used as an alternative method to prevent and control pathogenic bacteria in aquaculture. However, applications of bacteriophages for a control of Aeromonas spp. infection are still limited. Therefore, the aims of this study were to isolate lytic bacteriophages of Aeromonas spp. from canals and to evaluate the effectiveness of these phages to control Aeromonas spp. at the laboratory level. From 10 collecting sites, one isolate of Aeromonas designated as Aeromonas sp. OG-H was obtained and employed as a host for isolation of the phages. Two different phages were obtained, and specified as FOG1 and FOG3. Electron micrographs revealed that all isolated phages belonged to the family Myoviridae. These phages were highly specific to their host (Aeromonas sp. OG-H) and relatively stable at the pH and temperature ranging from 4.0 to 11.0 and 30 to 65âĶC, respectively. An in vitro study of the effect of bacteriophages against Aeromonas sp. OG-H revealed a remarkable decrease of the pathogen at 12 h, followed by bacterial regrowth to pre-treatment levels. These data suggested that the phages FOG1 and FOG3 are efficient as biocontrol agents against Aeromonas infection.  Keywords: Aeromonas, Bacteriophage, Temperature stability, pH stabilit
HAT-RAPD Fingerprinting Analysis of Thai Cassava Germplasm and Economic Cultivars of Farmersâ Preferences
āļāļāļāļąāļāļĒāđāļāļāļēāļĢāļĻāļķāļāļĐāļēāļāļ§āļēāļĄāļŦāļĨāļēāļāļŦāļĨāļēāļĒāļāļēāļāļāļąāļāļāļļāļāļĢāļĢāļĄāļāļāļāļĄāļąāļāļŠāļģāļāļ°āļŦāļĨāļąāļ (Manihot esculenta Crantz) āļāļģāļāļ§āļ 19 āļāļąāļāļāļļāđāļāļĨāļđāļ āđāļāļĒāđāļāđāđāļāļāļāļīāļ high annealing temperature-random amplified polymorphic DNA (HAT-RAPD) āļāļĢāļ°āļāļāļāļāđāļ§āļĒāļāļąāļāļāļļāđāļāļĨāļđāļāļāļĩāđāđāļāđāļāļēāļāđāļŦāļĨāđāļāđāļāļ·āđāļāļāļąāļāļāļļāļāļĢāļĢāļĄāļāļāļāļĻāļđāļāļĒāđāļ§āļīāļāļąāļĒāļāļ·āļāđāļĢāđāļĢāļ°āļĒāļāļ 16 āļāļąāļāļāļļāđāļāļĨāļđāļ āđāļĨāļ°āļāļąāļāļāļļāđāļāļĨāļđāļāļāļķāđāļāđāļāđāļāļāļĩāđāļāļīāļĒāļĄāļāļāļāđāļāļĐāļāļĢāļāļĢ 3 āļāļąāļāļāļļāđāļāļĨāļđāļāļāļēāļāļāļąāļāļŦāļ§āļąāļāļāļāļĢāļĢāļēāļāļŠāļĩāļĄāļē āđāļāļāļēāļĢāđāļāđāđāļāļĢāđāļĄāļāļĢāđāđāļāļāļŠāļļāđāļĄāļāļąāđāļāļŦāļĄāļ 28 āđāļāļĢāđāļĄāļāļĢāđ āļāļāļ§āđāļē 21 āđāļāļĢāđāļĄāļāļĢāđāđāļŦāđāđāļāļāļāļĩāđāļāđāļāđāļāļāļĩāđāļĄāļĩāļāļ§āļēāļĄāđāļāļāļāđāļēāļ āđāļĄāļ·āđāļāļ§āļīāđāļāļĢāļēāļ°āļŦāđāļāļ§āļēāļĄāļāđāļēāļāļāļēāļāļāļąāļāļāļļāļāļĢāļĢāļĄāļāļāļāļāļąāļāļāļļāđāļāļĨāļđāļāđāļāđāļĨāļ°āļāļđāđāđāļāļĒāđāļāđ Neiâs genetic distance āļāļāļ§āđāļēāļĄāļĩāļāļ§āļēāļĄāđāļāļāļāđāļēāļāļāļąāđāļāđāļāđ 3 āļāļķāļ 82% āļāļāļāļāļēāļāļāļĩāđāđāļāļāđāļāļĢāđāļāļĢāļĄāđāļŠāļāļāļāļ§āļēāļĄāļŠāļąāļĄāļāļąāļāļāđāļāļēāļāļāļąāļāļāļļāļāļĢāļĢāļĄāļāļāļāļĄāļąāļāļŠāļģāļāļ°āļŦāļĨāļąāļāļāļĩāđāļĻāļķāļāļĐāļēāļāđāļ§āļĒ unweighted pair group method with arithmetic mean (UPGMA) āļāļēāļāđāļāļāļāļĩāđāļāđāļāđāļāļāļĩāđāļĄāļĩāļāļ§āļēāļĄāđāļāļāļāđāļēāļāļāļģāļāļ§āļ 61 āđāļāļ āļŠāļēāļĄāļēāļĢāļāļāļąāļāļāļĨāļļāđāļĄāļāļąāđāļ 19 āļāļąāļāļāļļāđāļāļĨāļđāļ āđāļāđāļ 5 āļāļĨāļļāđāļĄ āđāļāļĒāđāļāđāļāđāļāđāļāļāļąāļ§āļāļĒāđāļēāļāļāļāļāļāļąāļāļāļļāđāļāļĄāļāļģāļāļ§āļ 4 āļāļĨāļļāđāļĄ āđāļĨāļ°āļāļąāļāļāļļāđāļŦāļ§āļēāļāļāļģāļāļ§āļ 1 āļāļĨāļļāđāļĄ āļ āļēāļĒāđāļāļāļĨāļļāđāļĄāļāļāļāļāļąāļāļāļļāđāļāļĄāļāļ 3 āļāļąāļāļāļļāđāļāļĨāļđāļāđāļĻāļĢāļĐāļāļāļīāļāļāļĩāđāļāļīāļĒāļĄāđāļāļĒāđāļāļĐāļāļĢāļāļĢ āđāļāđāđāļāđ āļāļąāļāļāļļāđāđāļāļĨāđāļāļĄāļąāļāļāļĢ (āļĄāļĩāļāļ§āļēāļĄāļŠāļąāļĄāļāļąāļāļāđāđāļāļĨāđāļāļīāļāļāļąāļāļāļąāļāļāļļāđāļĢāļ°āļĒāļāļ 72) āļāļąāļāļāļļāđāđāļāđāļāļāļāđ (āļāļąāļāļāļĒāļđāđāđāļāļāļĨāļļāđāļĄāđāļāļĩāļĒāļ§āļāļąāļāļāļąāļāļāļąāļāļāļļāđāļŦāđāļ§āļĒāļāļ 60 āđāļĨāļ°āļāļąāļāļāļļāđāļŦāđāļ§āļĒāļāļ 80) āđāļĨāļ°āļāļąāļāļāļļāđāļāļēāļāļāļēāļ§ (āļāļąāļāļāļĒāļđāđāđāļāļāļĨāļļāđāļĄāđāļāļĩāļĒāļ§āļāļąāļāļāļąāļāļāļąāļāļāļļāđāļĢāļ°āļĒāļāļ 3 āđāļĨāļ°āļāļąāļāļāļļāđāļĢāļ°āļĒāļāļ 5) āļāļģāļŠāļģāļāļąāļ: āļĄāļąāļāļŠāļģāļāļ°āļŦāļĨāļąāļ āđāļŦāļĨāđāļāđāļāļ·āđāļāļāļąāļāļāļļāļāļĢāļĢāļĄāļĄāļąāļāļŠāļģāļāļ°āļŦāļĨāļąāļ āđāļāļāļāļīāļ HAT-RAPD āļ§āļīāļāļĩ UPGMAABSTRACTSixteen cultivars of cassava (Manihot esculenta Crantz) were obtained from the germplasm collection in Rayong Field Crops Research Center, and three other economic cultivars of farmersâ preferences from a well-established cassava plantation in Nakhon Ratchasima. Genetic diversity of these nineteen cultivars was assessed by high annealing temperature-random amplified polymorphic DNA (HAT-RAPD) technique. Out of 28 random primers used, 21 generated polymorphic bands. Pairwise distances between taxa calculated using Neiâs genetic distance varied from 3 to 82%. An unweighted pair group method with arithmetic mean (UPGMA) dendrogram constructed based on 61 RAPD characters classified all 19 cultivars into five clusters, four of which containing bitter-type accessions and one accommodating sweet-type accessions. The bitter-type clusters possessed three cultivars of farmersâ preferences, including Gled Mangorn (closely related to Rayong 72), Giant (placed with Huay Bong 60 and Huay Bong 80), and Nak Khao (placed with Rayong 3 and Rayong 5).Keywords: Manihot esculenta Crantz, cassava germplasm, HAT-RAPD technique, UPGMA metho
The influence of external factors on bacteriophagesâreview
The ability of bacteriophages to survive under unfavorable conditions is highly diversified. We summarize the influence of different external physical and chemical factors, such as temperature, acidity, and ions, on phage persistence. The relationships between a phageâs morphology and its survival abilities suggested by some authors are also discussed. A better understanding of the complex problem of phage sensitivity to external factors may be useful not only for those interested in pharmaceutical and agricultural applications of bacteriophages, but also for others working with phages
Predicting NBA Champion Using Pairwise Comparison Model
Executive Summary
This project uses pairwise comparisons to determine the most likely team to win the 2003 NBA Championship. Statistics were gathered for four semi-final teams and were used to measure team strength. Project team members used the data to base their judgment when comparing teams. Comparisons began with no data available and the amount of data was increased sequentially until six statistical criteria were available with which to substantiate the scores. Probabilities were calculated using the Pairwise Comparison Model (PCM) software
Expectations of Thai Students who have plan to work in hi-tech companies: ETM Thai students case study, PowerPoint Presentation
Agenda
Background of the case study
Literature research Methodology Research result Discussion Recommendation Conclusio
Digital Divide Between developed and developing countries
Abstract:
As the digital economy moves our world towards greater prosperity, the goal of the world should be to ensure that all people, regardless of age, income, race, ethnicity, disability, gender, or geography, gain access to the technological tools and skills needed in the new economy. Commonly used tools that are highly beneficial in today\u27s digital revolution are telephones (both wired and wireless), computers, and the internet. As the Internet is becoming an increasingly vital tool in our society and technology provides increasing options to citizens to conduct their daily activities on line, such as shopping, paying bills, registering and renewing licenses, etc. People who lack access, knowledge, and training on how to utilize those tools are at a growing disadvantage and will eventually be unable to function in an ever-increasing information-based society. This paper analyzes various aspects of bridging digital divide and provides tools/access as the first step in bridging the digital divide. Personal knowledge and ability to utilize technology to improve quality of life, education and employment opportunity have considerably gained more importance to community and economic development of the country. This paper focuses on digital divide between less developed country, South Africa and developed country, United States. The key to understanding the digital divide is to look at it in broader terms - a digital divide exists anytime there is a gap in opportunities experienced by those with limited access to information technology. This paper analyzes various issues faced in bridging digital divide and provides recommendations to gap the existing digital divide between developed and developing countries
- âĶ