28 research outputs found

    Antihyperlipidemic and antiperoxidative effect of Diasulin, a polyherbal formulation in alloxan induced hyperglycemic rats

    Get PDF
    BACKGROUND: This study was undertaken to investigation the effect of Diasulin, a poly herbal drug composed of ethanolic extract of ten medicinal plants on blood glucose, plasma insulin, tissue lipid profile, and lipidperoxidation in alloxan induced diabetes. METHODS: Ethanolic extract of Diasulin a, poly herbal drug was administered orally (200 mg/kg body weight) for 30 days. The different doses of Diasulin on blood glucose and plasma insulin in diabetic rats were studied and the levels of lipid peroxides [TBARS, and Hydroperoxide] and tissue lipids [cholesterol, triglyceride, phospholipides and free fatty acids] were also estimated in alloxan induced diabetic rats. The effects were compared with glibenclamide. RESULT: Treatment with Diasulin and glibenclamide resulted in a significant reduction of blood glucose and increase in plasma insulin. Diasulin also resulted in a significant decrease in tissue lipids and lipid peroxide formation. The effect produced by Diasulin was comparable with that of glibenclamide. CONCLUSION: The decreased lipid peroxides and tissue lipids clearly showed the antihyperlipidemic and antiperoxidative effect of Diasulin apart from its antidiabetic effect

    Antidiabetic properties of dietary flavonoids: a cellular mechanism review

    Full text link

    New In Vitro Studies on the Bioprofile of Genista tenera Antihyperglycemic Extract

    Get PDF
    ABSTRACT: The inhibition of α-glucosidase and glucose-6-phosphatase, two enzymes involved in the carbohydrate metabolism, is an important target to control glycaemia on individuals with type 2 diabetes. In this work we report for the first time the inhibition of both enzymes by the antihyperglycemic n-butanol extract from Genista tenera (Fabaceae). This extract decreased α-glucosidase and glucose-6-phosphatase activities to 0.97 and 80.25 %, respectively, being more effective than acarbose, and phlorizin, the positive controls, which reduced enzymes activities only to 17.39 and 96.06 %. Once inflammation and oxidative stress are related to diabetic impairments, the anti-inflammatory activity of the extract was also evaluated, through its inhibitory activity over COX-1 enzyme (47.5 % inhibition). Moreover, after induction of oxidative stress by UV radiation, the viability of irradiated rat liver hepatoma cells exposed to the extract was significantly higher (67.82 %) than that promoted by ascorbic acid, the positive control (45.05 %). In addition, the stability of the extract under gastrointestinal conditions was evaluated by HPLC–DAD-ESI–MS/MS. Flavonoid diglycosides were identified as the main constituents of the extract, and no alterations in the chemical composition nor in the antioxidant activity were observed after in vitro digestion with artificial gastric and pancreatic juices. GRAPHICAL ABSTRACT: [Image: see text
    corecore