435 research outputs found

    Understanding Universality within a Liberal Welfare Regime: The Case of Universal Social Programs in Canada

    Get PDF
    Although Canada is known as a liberal welfare regime, universality is a key issue in that country, as several major social programs are universal in both their core principles and coverage rules. The objective of this article is to discuss the meaning of universality and related concepts before exploring the development of individual universal social programs in Canada, with a particular focus on health care and old-age pensions. More generally, the article shows how universality can exist and become resilient within a predominantly liberal welfare regime due to the complex and fragmented nature of modern social policy systems, in which policy types vary from policy area to policy area, and even from program to program within the same policy area. The broader analysis of health care and old-age pensions as policy areas illustrates this general claim. This analysis looks at the historical development and the politics of provincial universal health coverage since the late 1950s and at the evolution of the federal Old Age Security program since its creation in the early 1950s. The main argument of this article is that universality as a set of principles remains stronger in health care than in pensions yet key challenges remain in each of these policy areas. Another contention is that there are multiple and contested universalisms in social policy

    Brain Machine Interface Using Emotiv EPOC to Control Robai Cyton Robotic Arm

    Get PDF
    The initial framework for an electroencephalography (EEG) thought recognition software suite is developed, built, and tested. This suite is designed to recognize human thoughts and pair them to actions for controlling a robotic arm. Raw EEG brain activity data is collected using an Emotiv EPOC headset. The EEG data is processed through linear discriminant analysis (LDA), where an intended action is identified. The EEG classification suite is being developed to increase the number of distinct actions that can be identified compared to the Emotiv recognition software. The EEG classifier was able to correctly distinguish between two separate physical movements. Future goals for this research include recognition of more gestures, and enabling of real time processing

    Analysis of anisotropic pore structures using terahertz spectroscopy and imaging

    Get PDF
    This study demonstrates the analysis of anisotropic pore structures of highly porous pharmaceutical powder compacts by combining terahertz time-domain spectroscopy and in-situ measurements of the liquid penetration using terahertz pulsed imaging

    On the role of API in determining porosity, pore structure and bulk modulus of the skeletal material in pharmaceutical tablets formed with MCC as sole excipient

    Get PDF
    The physical properties and mechanical integrity of pharmaceutical tablets are of major importance when loading with active pharmaceutical ingredient(s) (API) in order to ensure ease of processing, control of dosage and stability during transportation and handling prior to patient consumption. The interaction between API and excipient, acting as functional extender and binder, however, is little understood in this context. The API indomethacin is combined in this study with microcrystalline cellulose (MCC) at increasing loading levels. Tablets from the defined API/MCC ratios are made under conditions of controlled porosity and tablet thickness, resulting from different compression conditions, and thus compaction levels. Mercury intrusion porosimetry is used to establish the accessible pore volume, pore size distribution and, adopting the observed region of elastic intrusion-extrusion at high pressure, an elastic bulk modulus of the skeletal material is recorded. Porosity values are compared to previously published values derived from terahertz (THz) refractive index data obtained from exactly the same tablet sample sets. It is shown that the elastic bulk modulus is dependent on API wt% loading under constant tablet preparation conditions delivering equal dimensions and porosity. The findings are considered of novel value in respect to establishing consistency of tablet production and optimisation of physical properties

    X-ray Fluorescence Analysis of Feldspars and Silicate Glass: Effects of Melting Time on Fused Bead Consistency and Volatilisation

    Get PDF
    Reproducible preparation of lithium tetraborate fused beads for XRF analysis of glass and mineral samples is of paramount importance for analytical repeatability. However, as with all glass melting processes, losses due to volatilisation must be taken into account and their effects are not negligible. Here the effects of fused bead melting time have been studied for four Certified Reference Materials (CRM’s: three feldspars, one silicate glass), in terms of their effects on analytical variability and volatilisation losses arising from fused bead preparation. At melting temperatures of 1065 °C, and for feldspar samples, fused bead melting times shorter than approximately 25 min generally gave rise to a greater deviation of the XRF-analysed composition from the certified composition. This variation might be due to incomplete fusion and/or fused bead inhomogeneity but further research is needed. In contrast, the shortest fused bead melting time for the silicate glass CRM gave an XRF-analysed composition closer to the certified values than longer melting times. This may suggest a faster rate of glass-in-glass dissolution and homogenization during fused bead preparation. For all samples, longer melting times gave rise to greater volatilisation losses (including sulphates and halides) during fusion. This was demonstrated by a linear relationship between SO3 mass loss and time1/2, as predicted by a simple diffusion-based model. Iodine volatilisation displays a more complex relationship, suggestive of diffusion plus additional mechanisms. This conclusion may have implications for vitrification of iodine-bearing radioactive wastes. Our research demonstrates that the nature of the sample material impacts on the most appropriate fusion times. For feldspars no less than ~25 min and no more than ~60 min of fusion at 1065 °C, using Li2B4O7 as the fusion medium and in the context of feldspar samples and the automatic fusion equipment used here, strikes an acceptable (albeit non-ideal) balance between the competing factors of fused bead quality, analytical consistency and mitigating volatilisation losses. Conversely, for the silicate glass sample, shorter fusion times of less than ~30 min under the same conditions provided more accurate analyses whilst limiting volatile losses

    Primary Biliary Cirrhosis with a normal Alkaline Phosphatase: a case report

    Get PDF
    A 78 year-old lady presented with abdominal swelling and fatigue. She was anaemic with mild hypoalbuminaemia, and had a normal alkaline phosphatase. Computed tomography showed hepatosplenomegaly and mild ascites. Anti mitochondrial antibodies were strongly positive, as were anti nuclear antibodies, and the gamma glutamyl-transferase was shown to be elevated. A diagnosis of primary biliary cirrhosis was made. A brief discussion of treatment of primary biliary cirrhosis follows. The case is notable for the fact that primary biliary cirrhosis can manifest clinically without an elevation in alkaline phosphatase – normally the hallmark of the disease

    Whole-Genome Sequencing and Concordance Between Antimicrobial Susceptibility Genotypes and Phenotypes of Bacterial Isolates Associated with Bovine Respiratory Disease.

    Get PDF
    Extended laboratory culture and antimicrobial susceptibility testing timelines hinder rapid species identification and susceptibility profiling of bacterial pathogens associated with bovine respiratory disease, the most prevalent cause of cattle mortality in the United States. Whole-genome sequencing offers a culture-independent alternative to current bacterial identification methods, but requires a library of bacterial reference genomes for comparison. To contribute new bacterial genome assemblies and evaluate genetic diversity and variation in antimicrobial resistance genotypes, whole-genome sequencing was performed on bovine respiratory disease-associated bacterial isolates (Histophilus somni, Mycoplasma bovis, Mannheimia haemolytica, and Pasteurella multocida) from dairy and beef cattle. One hundred genomically distinct assemblies were added to the NCBI database, doubling the available genomic sequences for these four species. Computer-based methods identified 11 predicted antimicrobial resistance genes in three species, with none being detected in M. bovis While computer-based analysis can identify antibiotic resistance genes within whole-genome sequences (genotype), it may not predict the actual antimicrobial resistance observed in a living organism (phenotype). Antimicrobial susceptibility testing on 64 H. somni, M. haemolytica, and P. multocida isolates had an overall concordance rate between genotype and phenotypic resistance to the associated class of antimicrobials of 72.7% (P < 0.001), showing substantial discordance. Concordance rates varied greatly among different antimicrobial, antibiotic resistance gene, and bacterial species combinations. This suggests that antimicrobial susceptibility phenotypes are needed to complement genomically predicted antibiotic resistance gene genotypes to better understand how the presence of antibiotic resistance genes within a given bacterial species could potentially impact optimal bovine respiratory disease treatment and morbidity/mortality outcomes

    Terahertz-Based Porosity Measurement of Pharmaceutical Tablets: a Tutorial

    Get PDF
    Abstract: Porosity, one of the important quality attributes of pharmaceutical tablets, directly affects the mechanical properties, the mass transport and hence tablet disintegration, dissolution and ultimately the bioavailability of an orally administered drug. The ability to accurately and quickly monitor the porosity of tablets during manufacture or during the manufacturing process will enable a greater assurance of product quality. This tutorial systematically outlines the steps involved in the terahertz-based measurement method that can be used to quantify the porosity of a tablet within seconds in a non-destructive and non-invasive manner. The terahertz-based porosity measurement can be performed using one of the three main methods, which are (i) the zero-porosity approximation (ZPA); (ii) the traditional Bruggeman effective medium approximation (TB-EMA); and (iii) the anisotropic Bruggeman effective medium approximation (AB-EMA). By using a set of batches of flat-faced and biconvex tablets as a case study, the three main methods are compared and contrasted. Overall, frequency-domain signal processing coupled with the AB-EMA method was found to be most suitable approach in terms of accuracy and robustness when predicting the porosity of tablets over a range of complexities and geometries. This tutorial aims to concisely outline all the necessary steps, precautions and unique advantages associated with the terahertz-based porosity measurement method
    • …
    corecore