24 research outputs found

    Generation and application of dynamic gratings in optical fibers using stimulated Brillouin scattering

    Get PDF
    Since the invention of optical fiber cable data transmission using light has become ubiquitous in the past years. Nonlinear optical effects, which are hardly noticed in our daily life, have become crucial and highly influential for the design and performance of advance high-capacity systems. Future optical systems will definitely require signal processing operations to be performed on data signals “on the fly” solely in the optical domain. Brillouin scattering is currently one of the most prominent nonlinear effects in optical fibers, as it has found many applications in various fields of photonics, such as slow light, new high coherent sources, filters, optical fiber sensing, etc. In this thesis we investigate a novel phenomenon based on Stimulated Brillouin Scattering, which is called dynamic Brillouin grating (DBG). Investigating the process of DBG generation in optical fibers we propose several new approaches to realize new tools for signal processing of the optical signal by using phonon-photon interactions. First an analytical model is proposed to describe localized DBG generation in optical fibers using three coupled equations for Stimulated Brillouin Scattering. Based on this model we can show how the grating is generated and which shape it has in time when two pump pulses are used with optical frequency difference equal to the Brillouin shift of the fiber. Moreover optical phase conjugation is also theoretically predicted for the optical wave reflected from DBG. Several applications of Dynamic Brillouin grating are identified and investigated. An optical signal delay line or buffer is proposed and experimentally demonstrated using DBG principle. Storage of an input optical pulse is achieved by changing the position of the localized DBG inside the fiber. Here DBG acts as a Bragg reflector for the optical pulse and change in DBG position defines the time-of-flight of the input and reflected pulse. Single pulse delays can be dynamically controlled with a buffer capacity ranging from several picoseconds to more than one microsecond. Such delays show that DBG based signal delay lines can easily outperform slow light based delay lines in terms of delay-bandwidth product. Optical delay of pulse trains is also achieved, but with maximum limited amount of delay governed by the acoustic wave decay constant, which in standard silica fibers is around 10-12 ns. Moreover microwave photonic signals can be also delayed using DBG demonstrating true time delay. In this configuration, the reflection bandwidth of the DBG defines the maximum operational radio frequency. Relation of the DBG bandwidth as a function of its length was measured and it was determined that DBG exhibits similar properties as weak uniform fiber Bragg grating (FBG). Another application of the DBG gratings is demonstrated by exploiting this phenomenon to realize microwave photonic filters. For the first time, two-, three- and four-tap microwave photonic filter configurations are realized based on DBG. Free spectral range and IV tcartsbA stop band central frequencies of the proposed microwave filters can be easily tuned by adjusting the properties and positions of DBGs. Dynamic gratings generated by amplitude modulated pump waves are used to realize optical differentiation, integration and time reversal of input optical signals. Performed experiments demonstrate that a DBG based signal processor performs operations on the complex amplitude of the input optical wave. The DBG based integrator offers high flexibility in terms of operational wavelength and variable integration time, which can be controlled by changing the DBG length. For the first time, new operations of true time reversal of several bit sequences are performed using dynamic Brillouin grating. To overcome the problem of the decay of the localized acoustic grating, a novel method based on phase modulation by pseudo-random bit sequence (PRBS) is proposed, which allows generation of localized and stationary DBG at random positions inside the fiber. Such a method opens up new possibilities for signal control, and for optical fiber sensing. Advantages and limitations of the PRBS technique in terms of signal-to-noise ratio are discussed. It is experimentally verified that PRBS generation of DBG is highly attractive for the operations on optical signals where time averaging is possible, such as in the fields of microwave photonics and distributed fiber sensing. On the other hand, it was experimentally verified that realization of the optical buffer for continuous digital data using the PRBS technique is difficult due to the substantial amount of instantaneous noise. A separate chapter of this thesis is devoted to the application of DBG to the field of distributed fiber sensing. A DBG based distributed temperature and stress sensor in polarization maintaining fibers has been realized, showing 1 cm spatial resolution, which is - to the best of our knowledge - first time, demonstrated using a pulsed-based Brillouin sensor. The demonstration is performed in a 20 m fiber, but the sensing range of the proposed DBG based sensor can be expanded up to several hundred meters. In addition, it is shown that the demonstrated spatial resolution is not the ultimate limit, and a finer spatial resolution can be achieved by simply reducing the probe pulse duration. Another Brillouin distributed temperature and stress sensor is proposed based on the DBG principle. Here DBG is generated by modulating the phases of a continuous Brillouin pump and probe waves by common PRBS with unipolar encoding and modulation speeds faster than phonon lifetime. By choosing the proper parameters of PRBS, only one localized and permanent dynamic Brillouin grating is placed inside the sensing fiber. Distributed measurements of temperature or strain are accomplished by scanning the position of the DBG inside the fiber and determining the Brillouin resonance condition at each position. Using this technique, a random access sensor with 1 cm spatial resolution is demonstrated over a 40 m standard single mode fiber. In the proposed scheme the spatial resolution can be easily changed by changing the bit duration of the PRBS, while the measurement range is controlled by the length of the PRBS sequence

    Photonic delay line for broadband optical signals, based on dynamic grating reflectors in fibers

    Get PDF
    We experimentally demonstrate that a novel type of photonic delay line based on movable dynamic grating reflectors generated in polarization maintaining fibers can provide continuously tunable signal delaying for high capacity optical data streams and wide bandwidth microwave signals

    Movable dynamic grating-based optical delay line in polarization maintaining fibers

    Get PDF
    A new type of all optical delay line is realized in fibers. A local dynamic grating reflector can be generated everywhere in the fiber, demonstrating >1 us delay for 650 ps pulses

    Dynamic Brillouin gratings: A new tool in fibers for all-optical signal processing

    Get PDF
    The recent possibility to generate dynamic Bragg gratings by the interaction of 2 optical waves through stimulated Brillouin scattering in highly birefringent fibers has opened a new field to realize all-optical fiber-based functions

    Time-domain distributed sensor with 1 cm spatial resolution based on Brillouin dynamic gratings

    Get PDF
    We propose and experimentally demonstrate the highest-resolution BOTDA system ever reported using Brillouin dynamic grating in a polarization-maintaining fiber (PMF). Acoustic waves containing the information of local Brillouin frequency are generated by a long pump pulse in one polarization, and read out by a short probe pulse in the orthogonal polarization at a clearly distinct optical frequency from the pump. In the experiment, a distributed strain measurement with 1 cm spatial resolution is performed over a 20 m fiber

    High-resolution Brillouin fiber sensing using random phase coding of the pump and probe waves

    Get PDF
    Distributed temperature measurements with 1.2 cm resolution based on stimulated Brillouin scattering (SBS) in standard fibers are reported. High resolution is achieved by phase-coding both pump and probe waves with a high-rate, pseudo-random binary phase code. The SBS interaction is effectively confined to narrow correlation peaks. The separation between adjacent peaks, signifying the unambiguous measurement range, scales with the length of the modulation code and can therefore be made arbitrarily long. Measurements were performed over 40 meters of fiber, or 3300 resolution points. The technique is applicable to distributed measurements of birefringence and Brillouin frequency shift over polarization maintaining fibers

    All-optical calculus based on dynamic Brillouin grating reflectors in optical fibers

    Get PDF
    We experimentally demonstrate that all-optical signal calculus can be realized based on dynamic Brillouin gratings in optical fibers. Temporal integration and first-order differentiation were performed for optical pulse with various waveforms

    Long Variable Delay and Distributed Sensing Using Stationary and Localized Brillouin Dynamic Gratings

    Get PDF
    Stationary and localized Brillouin dynamic gratings are generated using phase modulation of both pump waves by a pseudo-random bit sequence. The gratings are applied to long variable delay of pulses and to cm-level distributed sensin

    Variable delay using stationary and localized Brillouin dynamic gratings

    Get PDF
    Reflections from movable, dynamic acoustic gratings in polarization maintaining (PM) fibers are employed in the long variable delay of periodic, isolated pulses. The gratings are introduced by stimulated Brillouin scattering (SBS) interaction between two counter-propagating pump waves, which are spectrally detuned by the Brillouin frequency shift of the PM fiber and are both polarized along one of its principal axes. The gratings are interrogated by the reflections of read-out signals that are polarized along the orthogonal principal axis. High-rate phase modulation of both pump waves by a pseudo-random binary sequence introduces dynamic gratings that are both localized and stationary, at specific locations in which the modulated pumps are correlated. The separation between adjacent correlation peaks can be made arbitrarily long. Long variable delays are readily obtained by scanning the grating along the fiber, via changing either the length or the rate of the modulation sequence. At the same time, the short length of the gratings, on the order of a cm, accommodates the delay of broadband pulses. The technique is therefore free of the delay-times-bandwidth product limitation that undermines the performance of SBS-based 'slow light' delay: we report the delay 1-ns long pulses by as much as 770 ns. In addition, the combined reflections from two dynamic gratings with a variable separation are used to implement radio-frequency photonic filters of tunable free spectral range. At the current stage, the technique is restricted by noise from residual scattering that takes place outside of the correlation peaks. Hence, it is thus far limited to the processing of repetitive signals, for which the noise may be effectively averaged out

    Localized and stationary dynamic gratings via stimulated Brillouin scattering with phase modulated pumps

    Get PDF
    A novel technique for the localization of stimulated Brillouin scattering (SBS) interaction is proposed, analyzed and demonstrated experimentally. The method relies on the phase modulation of two counter-propagating optical waves by a common pseudo-random bit sequence (PRBS), these waves being spectrally detuned by the Brillouin frequency shift. The PRBS symbol duration is much shorter than the acoustic lifetime. The interference between the two modulated waves gives rise to an acoustic grating that is confined to narrow correlation peaks, as short as 1.7 cm. The separation between neighboring peaks, which is governed by the PRBS length, can be made arbitrarily long. The method is demonstrated in the generation and applications of dynamic gratings in polarization maintaining (PM) fibers. Localized and stationary acoustic gratings are induced by two phase modulated pumps that are polarized along one principal axis of the PM fiber, and interrogated by a third, readout wave which is polarized along the orthogonal axis. Using the proposed technique, we demonstrate the variable delay of 1 ns-long readout pulses by as much as 770 ns. Noise due to reflections from residual off-peak gratings and its implications on the potential variable delay of optical communication data are discussed. The method is equally applicable to the modulation of pump and probe waves in SBS over standard fibers
    corecore