23 research outputs found

    Comprehensive characterization of 536 patient-derived xenograft models prioritizes candidatesfor targeted treatment

    Get PDF
    Development of candidate cancer treatments is a resource-intensive process, with the research community continuing to investigate options beyond static genomic characterization. Toward this goal, we have established the genomic landscapes of 536 patient-derived xenograft (PDX) models across 25 cancer types, together with mutation, copy number, fusion, transcriptomic profiles, and NCI-MATCH arms. Compared with human tumors, PDXs typically have higher purity and fit to investigate dynamic driver events and molecular properties via multiple time points from same case PDXs. Here, we report on dynamic genomic landscapes and pharmacogenomic associations, including associations between activating oncogenic events and drugs, correlations between whole-genome duplications and subclone events, and the potential PDX models for NCI-MATCH trials. Lastly, we provide a web portal having comprehensive pan-cancer PDX genomic profiles and source code to facilitate identification of more druggable events and further insights into PDXs' recapitulation of human tumors

    The impact of remineralization depth on the air-sea carbon balance

    No full text
    As particulate organic carbon rains down from the surface ocean it is respired back to carbon dioxide and released into the oceans interior. The depth at which this sinking carbon is converted back to carbon dioxideknown as the remineralization depthdepends on the balance between particle sinking speeds and their rate of decay. A host of climate-sensitive factors can affect this balance, including temperature, oxygen concentration, stratification, community composition and the mineral content of the sinking particles. Here we use a three-dimensional global ocean biogeochemistry model to show that a modest change in remineralization depth can have a substantial impact on atmospheric carbon dioxide concentrations. For example, when the depth at which 63% of sinking carbon is respired increases by 24 m globally, atmospheric carbon dioxide concentrations fall by 10-27 ppm. This reduction in atmospheric carbon dioxide concentration results from the redistribution of remineralized carbon from intermediate waters to bottom waters. As a consequence of the reduced concentration of respired carbon in upper ocean waters, atmospheric carbon dioxide is preferentially stored in newly formed North Atlantic Deep Water. We suggest that atmospheric carbon dioxide concentrations are highly sensitive to the potential changes in remineralization depth that may be caused by climate change. © 2009 Macmillan Publishers Limited. All rights reserved
    corecore