2 research outputs found

    Impaired Relaxation and Reduced Lusitropic Reserve in Atrial Myocardium in the Obese Patients

    Get PDF
    Background: Obesity can influence the structure and function of the atrium, but most studies focused on the relationship of body mass index (BMI) and overt left atrium (LA) dysfunction as assessed by clinical imaging. We combined the assessment of right atrium (RA) function in vivo and in vitro in obese and non-obese patients scheduled for elective cardiac surgery. Methods: Atrial structure and function were quantified pre-operatively by echocardiography. RA tissue removed for the establishment of extracorporeal support was collected and RA trabeculae function was quantified in vitro at baseline and with adrenergic stimulation (isoproterenol). Fatty acid-binding protein 3 (FABP3) was quantified in RA tissue. Results were stratified according to the BMI of the patients. Results: About 76 patients were included pre-operatively for the echocardiographic analysis. RA trabeculae function at baseline was finally quantified from 46 patients and RA function in 28 patients was also assessed with isoproterenol. There was no significant correlation between BMI and the parameters of atrial function measured by the clinical echocardiography. However, in vitro measurements revealed a significant correlation between BMI and a prolonged relaxation of the atrial myocardium at baseline, which persisted after controlling for the atrial fibrillation and diabetes by the partial correlation analysis. Acceleration of relaxation with isoproterenol was significantly lower in the obese group (BMI ≥ 30 kg/m(2)). As a result, relaxation with adrenergic stimulation in the obese group remained significantly higher compared to the overweight group (25 kg/m(2) ≤ BMI < 30 kg/m(2), p = 0.027) and normal group (18.5 kg/m(2) ≤ BMI < 25 kg/m(2), p = 0.036). There were no differences on impacts of the isoproterenol on (systolic) developed force between groups. The expression of FABP3 in the obese group was significantly higher compared to the normal group (p = 0.049) and the correlation analysis showed the significant correlations between the level of FABP3 in the RA trabeculae function. Conclusion: A higher BMI is associated with the early subclinical changes of RA myocardial function with the slowed relaxation and reduced adrenergic lusitropy

    Lung-to-Heart Nano-in-Micro Peptide Promotes Cardiac Recovery in a Pig Model of Chronic Heart Failure

    No full text
    Background: The lack of disease-modifying drugs is one of the major unmet needs in patients with heart failure (HF). Peptides are highly selective molecules with the potential to act directly on cardiomyocytes. However, a strategy for effective delivery of therapeutics to the heart is lacking. Objectives: In this study, the authors sought to assess tolerability and efficacy of an inhalable lung-to-heart nano-in-micro technology (LungToHeartNIM) for cardiac-specific targeting of a mimetic peptide (MP), a first-in-class for modulating impaired L-type calcium channel (LTCC) trafficking, in a clinically relevant porcine model of HF. Methods: Heart failure with reduced ejection fraction (HFrEF) was induced in Göttingen minipigs by means of tachypacing over 6&nbsp;weeks. In a setting of overt HFrEF (left ventricular ejection fraction [LVEF] 30% ± 8%), animals were randomized and treatment was started after 4&nbsp;weeks of tachypacing. HFrEF animals inhaled either a dry powder composed of mannitol-based microparticles embedding biocompatible MP-loaded calcium phosphate nanoparticles (dpCaP-MP) or the LungToHeartNIM only (dpCaP without MP). Efficacy was evaluated with the use of echocardiography, invasive hemodynamics, and biomarker assessment. Results: DpCaP-MP inhalation restored systolic function, as shown by an absolute LVEF increase over the treatment period of 17% ± 6%, while reversing cardiac remodeling and reducing pulmonary congestion. The effect was recapitulated ex&nbsp;vivo in cardiac myofibrils from treated HF animals. The treatment was well tolerated, and no adverse events occurred. Conclusions: The overall tolerability of LungToHeartNIM along with the beneficial effects of the LTCC modulator point toward a game-changing treatment for HFrEF patients, also demonstrating the effective delivery of a therapeutic&nbsp;peptide to the diseased heart
    corecore