322 research outputs found
Mitochondrial metabolism in early neural fate and its relevance for neuronal disease modeling
Modulation of energy metabolism is emerging as a key aspect associated with cell fate transition. The establishment of a correct metabolic program is particularly relevant for neural cells given their high bioenergetic requirements. Accordingly, diseases of the nervous system commonly involve mitochondrial impairment. Recent studies in animals and in neural derivatives of human pluripotent stem cells (PSCs) highlighted the importance of mitochondrial metabolism for neural fate decisions in health and disease. The mitochondria-based metabolic program of early neurogenesis suggests that PSC-derived neural stem cells (NSCs) may be used for modeling neurological disorders. Understanding how metabolic programming is orchestrated during neural commitment may provide important information for the development of therapies against conditions affecting neural functions, including aging and mitochondrial disorders
Energy metabolism in neuronal/glial induction and iPSC-based modeling of brain disorders
The metabolic switch associated with the reprogramming of somatic cells to pluripotency has received increasing attention in recent years. However, the impact of mitochondrial and metabolic modulation on stem cell differentiation into neuronal/glial cells and related brain disease modeling still remains to be fully addressed. Here, we seek to focus on this aspect by first addressing brain energy metabolism and its inter-cellular metabolic compartmentalization. We then review the findings related to the mitochondrial and metabolic reconfiguration occurring upon neuronal/glial specification from pluripotent stem cells (PSCs). Finally, we provide an update of the PSC-based models of mitochondria-related brain disorders and discuss the challenges and opportunities that may exist on the road to develop a new era of brain disease modeling and therapy
Isolation and characterisation of polychlorinated biphenyl (PCB) degrading fungi from a historically contaminated soil
<p>Abstract</p> <p>Background</p> <p>Polychlorinated biphenyls (PCBs) are widespread toxic pollutants. Bioremediation might be an effective, cost competitive and environment-friendly solution for remediating environmental matrices contaminated by PCBs but it is still unsatisfactory, mostly for the limited biodegradation potential of bacteria involved in the processes. Very little is known about mitosporic fungi potential in PCB bioremediation and their occurrence in actual site historically contaminated soils. In the present study, we characterised the native mycoflora of an aged dump site soil contaminated by about 0.9 g kg<sup>-1 </sup>of Aroclor 1260 PCBs and its changing after aerobic biotreatment with a commercial complex source of bacteria and fungi. Fungi isolated from the soil resulting from 120 days of treatment were screened for their ability to adsorb or metabolise 3 target PCBs.</p> <p>Results</p> <p>The original contaminated soil contained low loads of few fungal species mostly belonging to the Scedosporium, Penicillium and Aspergillus genera. The fungal load and biodiversity generally decreased throughout the aerobic treatment. None of the 21 strains isolated from the treated soil were able to grow on biphenyl (200 mg L<sup>-1</sup>) or a mixture of 2-chlorobiphenyl, 4,4'-dichlorobiphenyl and 2,2',5,5'-tetrachlorobiphenyl (20 mg L<sup>-1 </sup>each) as sole carbon sources. However, 16 of them grew in a mineral medium containing the same PCBs mixture and glucose (10 g L<sup>-1</sup>). Five of the 6 isolates, which displayed the faster and more extensive growth under the latter conditions, were found to degrade the 3 PCBs apparently without the involvement of ligninolytic enzymes; they were identified as Penicillium chrysogenum, Scedosporium apiospermum, Penicillium digitatum and Fusarium solani. They are the first PCB degrading strains of such species reported so far in the literature.</p> <p>Conclusion</p> <p>The native mycoflora of the actual site aged heavily contaminated soil was mainly constituted by genera often reported as able to biodegrade organopollutants. It was generally remarkably reduced after the biotreatment, which however resulted in the selection of few mitosporic fungal species able to biodegrade PCBs. This is the first study in which an extensive characterisation of the cultivable indigenous mycoflora of an actual site aged PCB contaminated soil, as well as its changes upon soil bioremediation treatment, was conducted. Moreover, this is the first paper in which 5 strains ascribable to 4 mitosporic species able to biodegrade PCB are reported in the literature.</p
Generation of induced pluripotent stem cells from three individuals with Huntington's disease
Huntington's disease (HD) is a neurodegenerative disorder caused by abnormal glutamine (Q) expansion in the huntingtin protein due to elongated CAG repeats in the gene HTT. We used non-integrative episomal plasmids to generate induced pluripotent stem cells (iPSCs) from three individuals affected by HD: CH1 (58Q), and two twin brothers CH3 (44Q) and CH4 (44Q). The iPSC lines exhibited one healthy HTT allele and one with elongated CAG repeats, as confirmed by PCR and sequencing. All iPSC lines expressed pluripotency markers, exhibited a normal karyotype, and generated cells of the three germ layers in vitro
- …