32 research outputs found

    Molecular dynamics simulations of oscillatory Couette flows with slip boundary conditions

    Get PDF
    The effect of interfacial slip on steady-state and time-periodic flows of monatomic liquids is investigated using non-equilibrium molecular dynamics simulations. The fluid phase is confined between atomically smooth rigid walls, and the fluid flows are induced by moving one of the walls. In steady shear flows, the slip length increases almost linearly with shear rate. We found that the velocity profiles in oscillatory flows are well described by the Stokes flow solution with the slip length that depends on the local shear rate. Interestingly, the rate dependence of the slip length obtained in steady shear flows is recovered when the slip length in oscillatory flows is plotted as a function of the local shear rate magnitude. For both types of flows, the friction coefficient at the liquid-solid interface correlates well with the structure of the first fluid layer near the solid wall.Comment: 31 pages, 11 figure

    Molecular dynamics for linear polymer melts in bulk and confined systems under shear flow

    Get PDF
    In this work, we analyzed the individual chain dynamics for linear polymer melts under shear flow for bulk and confined systems using atomistic nonequilibrium molecular dynamics simulations of unentangled (C50H102) and slightly entangled (C178H358) polyethylene melts. While a certain similarity appears for the bulk and confined systems for the dynamic mechanisms of polymer chains in response to the imposed flow field, the interfacial chain dynamics near the boundary solid walls in the confined system are significantly different from the corresponding bulk chain dynamics. Detailed molecular-level analysis of the individual chain motions in a wide range of flow strengths are carried out to characterize the intrinsic molecular mechanisms of the bulk and interfacial chains in three flow regimes (weak, intermediate, and strong). These mechanisms essentially underlie various macroscopic structural and rheological properties of polymer systems, such as the mean-square chain end-to-end distance, probability distribution of the chain end-to-end distance, viscosity, and the first normal stress coefficient. Further analysis based on the mesoscopic Brightness method provides additional structural information about the polymer chains in association with their molecular mechanisms

    Advances in modelling of biomimetic fluid flow at different scales

    Get PDF
    The biomimetic flow at different scales has been discussed at length. The need of looking into the biological surfaces and morphologies and both geometrical and physical similarities to imitate the technological products and processes has been emphasized. The complex fluid flow and heat transfer problems, the fluid-interface and the physics involved at multiscale and macro-, meso-, micro- and nano-scales have been discussed. The flow and heat transfer simulation is done by various CFD solvers including Navier-Stokes and energy equations, lattice Boltzmann method and molecular dynamics method. Combined continuum-molecular dynamics method is also reviewed

    Molecular dynamics simulation on flows in nano-ribbed and nano-grooved channels

    No full text
    We present molecular dynamics simulation results on fluid and transport properties for nanochannel flows. The upper channel wall is constructed from periodic roughness elements and flows are simulated both in longitudinal (ribs) and transverse (grooves) direction and are compared to respective flat-wall channel flows. Various wall/fluid interaction strength ratios are considered for the simulations, covering typical hydrophilic and hydrophobic channels. We show that groove orientation (ribs and grooves) has a primitive effect on flow mainly due to slip length increase in a ribbed-wall channel. The transport properties of the fluid are significantly affected by wall wettability, as, in flows past an hydrophobic wall, the diffusion coefficient presents anisotropy, shear viscosity attains a minimum value and thermal conductivity increases. © 2015 Springer-Verlag Berlin Heidelber
    corecore