8,039 research outputs found

    The Luminous and Carbon-Rich Supernova 2006gz: A Double Degenerate Merger?

    Full text link
    Spectra and light curves of SN 2006gz show the strongest signature of unburned carbon and one of the slowest fading light curves ever seen in a type Ia event (Delta m_15 = 0.69 +/- 0.04). The early-time Si II velocity is low, implying it was slowed by an envelope of unburned material. Our best estimate of the luminosity implies M_V = -19.74 and the production of ~ 1.2 M_sun of 56Ni. This suggests a super-Chandrasekhar mass progenitor. A double degenerate merger is consistent with these observations.Comment: Accepted for publication in ApJL (5 pages, 4 figures). UBVr'i' light curves, UVOIR light curves, and spectra available at http://www.cfa.harvard.edu/supernova/SN2006g

    IMF and [Na/Fe] abundance ratios from optical and NIR Spectral Features in Early-type Galaxies

    Get PDF
    We present a joint analysis of the four most prominent sodium-sensitive features (NaD, NaI8190, NaI1.14, and NaI2.21), in the optical and Near-Infrared spectral range, of two nearby, massive (sigma~300km/s), early-type galaxies (named XSG1 and XSG2). Our analysis relies on deep VLT/X-Shooter long-slit spectra, along with newly developed stellar population models, allowing for [Na/Fe] variations, up to 1.2dex, over a wide range of age, total metallicity, and IMF slope. The new models show that the response of the Na-dependent spectral indices to [Na/Fe] is stronger when the IMF is bottom heavier. For the first time, we are able to match all four Na features in the central regions of massive early-type galaxies, finding an overabundance of [Na/Fe], in the range 0.5-0.7dex, and a bottom-heavy IMF. Therefore, individual abundance variations cannot be fully responsible for the trends of gravity-sensitive indices, strengthening the case towards a non-universal IMF. Given current limitations of theoretical atmosphere models, our [Na/Fe] estimates should be taken as upper limits. For XSG1, where line strengths are measured out to 0.8Re, the radial trend of [Na/Fe] is similar to [Mg/Fe] and [C/Fe], being constant out to 0.5Re, and decreasing by 0.2-0.3dex at 0.8Re, without any clear correlation with local metallicity. Such a result seems to be in contrast with the predicted increase of Na nucleosynthetic yields from AGB stars and TypeII SNe. For XSG1, the Na-inferred IMF radial profile is consistent, within the errors, with that derived from TiO features and the Wing-Ford band, presented in a recent paper.Comment: 22 pages, 8 figure, accepted for publication in MNRAS. The new Na-enhanced models will be available soon at http://miles.iac.es

    The central molecular gas structure in LINERs with low luminosity AGN: evidence for gradual disappearance of the torus

    Get PDF
    We present observations of the molecular gas in the nuclear environment of three prototypical low luminosity AGN (LLAGN), based on VLT/SINFONI AO-assisted integral-field spectroscopy of H2 1-0 S(1) emission at angular resolutions of ~0.17". On scales of 50-150 pc the spatial distribution and kinematics of the molecular gas are consistent with a rotating thin disk, where the ratio of rotation (V) to dispersion (sigma) exceeds unity. However, in the central 50 pc, the observations reveal a geometrically and optically thick structure of molecular gas (V/sigma10^{23} cm^{-2}) that is likely to be associated with the outer extent of any smaller scale obscuring structure. In contrast to Seyfert galaxies, the molecular gas in LLAGN has a V/sigma<1 over an area that is ~9 times smaller and column densities that are in average ~3 times smaller. We interpret these results as evidence for a gradual disappearance of the nuclear obscuring structure. While a disk wind may not be able to maintain a thick rotating structure at these luminosities, inflow of material into the nuclear region could provide sufficient energy to sustain it. In this context, LLAGN may represent the final phase of accretion in current theories of torus evolution. While the inflow rate is considerable during the Seyfert phase, it is slowly decreasing, and the collisional disk is gradually transitioning to become geometrically thin. Furthermore, the nuclear region of these LLAGN is dominated by intermediate-age/old stellar populations (with little or no on-going star formation), consistent with a late stage of evolution.Comment: 15 pages, including 4 figures and 1 table, Accepted for publication in ApJ Letter

    The puzzling interpretation of NIR indices: The case of NaI2.21

    Get PDF
    We present a detailed study of the Na I line strength index centered in the KK-band at 2210022100, {\AA} (NaI2.21 hereafter) relying on different samples of early-type galaxies. Consistent with previous studies, we find that the observed line strength indices cannot be fit by state-of-art scaled-solar stellar population models, even using our newly developed models in the NIR. The models clearly underestimate the large NaI2.21 values measured for most early-type galaxies. However, we develop a Na-enhanced version of our newly developed models in the NIR, which - together with the effect of a bottom-heavy initial mass function - yield NaI2.21 indices in the range of the observations. Therefore, we suggest a scenario in which the combined effect of [Na/Fe] enhancement and a bottom-heavy initial mass function are mainly responsible for the large NaI2.21 indices observed for most early-type galaxies. To a smaller extent, also [C/Fe] enhancement might contribute to the large observed NaI2.21 values.Comment: 13 pages, 4 figures, accepted for publication in MNRA

    An efficient and scalable platform for java source code analysis using overlaid graph representations

    Get PDF
    © 2013 IEEE. Although source code programs are commonly written as textual information, they enclose syntactic and semantic information that is usually represented as graphs. This information is used for many different purposes, such as static program analysis, advanced code search, coding guideline checking, software metrics computation, and extraction of semantic and syntactic information to create predictive models. Most of the existing systems that provide these kinds of services are designed ad hoc for the particular purpose they are aimed at. For this reason, we created ProgQuery, a platform to allow users to write their own Java program analyses in a declarative fashion, using graph representations. We modify the Java compiler to compute seven syntactic and semantic representations, and store them in a Neo4j graph database. Such representations are overlaid, meaning that syntactic and semantic nodes of the different graphs are interconnected to allow combining different kinds of information in the queries/analyses. We evaluate ProgQuery and compare it to the related systems. Our platform outperforms the other systems in analysis time, and scales better to program sizes and analysis complexity. Moreover, the queries coded show that ProgQuery is more expressive than the other approaches. The additional information stored by ProgQuery increases the database size and associated insertion time, but these increases are significantly lower than the query/analysis performance gains obtained.Spanish Department of Science, Innovation and Universities under Project RTI2018-099235-B-I00
    • …
    corecore