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ABSTRACT Although source code programs are commonly written as textual information, they enclose
syntactic and semantic information that is usually represented as graphs. This information is used for
many different purposes, such as static program analysis, advanced code search, coding guideline checking,
software metrics computation, and extraction of semantic and syntactic information to create predictive
models. Most of the existing systems that provide these kinds of services are designed ad hoc for the
particular purpose they are aimed at. For this reason, we created ProgQuery, a platform to allow users to
write their own Java program analyses in a declarative fashion, using graph representations. We modify
the Java compiler to compute seven syntactic and semantic representations, and store them in a Neo4j graph
database. Such representations are overlaid, meaning that syntactic and semantic nodes of the different graphs
are interconnected to allow combining different kinds of information in the queries/analyses. We evaluate
ProgQuery and compare it to the related systems. Our platform outperforms the other systems in analysis
time, and scales better to program sizes and analysis complexity. Moreover, the queries coded show that
ProgQuery is more expressive than the other approaches. The additional information stored by ProgQuery
increases the database size and associated insertion time, but these increases are significantly lower than the
query/analysis performance gains obtained.

INDEX TERMS Code analysis, graph database, coding guidelines, declarative query language, program
representation, Cypher, Java, Neo4j.

I. INTRODUCTION
In textual programming languages, input programs are collec-
tions of source code files (plus additional resources) coded
as text. That textual information actually encloses syntactic
and semantic information that compilers and interpreters,
after different analysis phases, represent internally as tree
and graph structures [1]. Besides compilers, other tools use
that syntactic and semantic information for different purposes
such as advanced source code querying [2], program anal-
ysis [3], and constructing predictive tools that learn from
massive source code repositories [4].
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Software developers and tools often query source code to
explore a system, or to search for code for maintenance tasks
such as bug fixing, refactoring and optimization. Text-based
search techniques are mainly based on finding sequences
of words and regular expressions, but they do not support
advanced queries based on syntactic and semantic properties
of the source code. That is a common necessity when, for
instance, a programmer wants to locate all the occurrences of
a code pattern in order to refactor them [5].

Program analysis is another case scenario where syntactic
and semantic information of source code is used for different
purposes. Static program analysis is based on the evaluation
of different dynamic program properties—such as correct-
ness, optimization, robustness and safety—without executing
the source code [3]. For example, FindBugs is an open-source
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static-analysis tool that finds potential bugs and performance
issues in Java code, not detected by the compiler (e.g., some
null pointer dereferences) [6]. Checkstyle checks whether
Java source code conforms to specific coding conventions
and standards (e.g., Sun code conventions and Google Java
style), widely used to automate code review processes [7].
Coverity is a multi-language commercial product that iden-
tifies critical software defects and security vulnerabilities
(e.g., buffer overflow) [8]. These tools work with different
syntactic and semantic representations of source code, but
users cannot specify their own ad-hoc analyses/queries via a
standard language. Instead, they have to implement their own
code analyzer by calling the APIs or services provided by the
tools.

In the existing advanced program analysis and query-
ing tools, there is a trade-off between scalability and
the source-code detail provided [9]. Those that scale to
million-line programs use relational or deductive databases,
but they just provide a reduced subset of all the program
information, with consequent limitations on their query
expressiveness. For example, Google’s BigQuery provides a
scalable SQL search system for any project in GitHub [10],
but syntactic and semantic patterns cannot be consulted.
On the other hand, some tools provide more advanced pro-
gram information, but that affects the scalability of the
system. For example, Wiggle provides detailed syntactic
structures of Java programs [11], but some non-basic analyses
do not terminate when applied to 60K lines of code programs
(Section V-B3).

As mentioned, syntactic and semantic information of
source code is also used in the construction of pre-
dictive tools that learn from massive code repositories
(e.g., GitHub, SourceForge, BitBucket and CodePlex) using
machine learning and probabilistic reasoning [12]. The infor-
mation extracted from programs in code repositories repre-
sents a huge amount of data to build predictive models. This
research field is commonly referred to as ‘‘big code’’, since
it brings together big data and code analysis [13]. The big
code approach has been used to build tools such as deob-
fuscators [12], statistical machine translation [14], security
vulnerability detection [15] and decompilation systems [16].
These tools extract syntactic and semantic information from
programs by implementing ad-hoc extraction procedures,
depending on the necessities of each particular problem.
However, they do not allow the user to easily extract syntactic
and semantic information from programs in a standardized
declarative fashion.

The storage of program representations is an important
issue to be considered when building a platform for source
code analysis. The persistence system must allow the storage
of multiple graph representations of million-line programs.
Information must be provided efficiently, because static pro-
gram analyses consult much information in different program
representations.

Graph databases support the native storage of graph struc-
tures, represented with nodes, relationships (edges) and

properties (data stored for nodes and relationships). On the
other hand, relational databases represent entities as tuples
(set of values), grouped into tables. Relationships between
entities are represented with common attributes in different
tables. In graph databases, records contain direct pointers to
connected nodes. This feature avoids the need to link tables
by checking the values of common attributes, as occurs in
relational databases. Therefore, the storage of graph struc-
tures in relational databases causes an impedance mismatch
that may involve performance costs [17]. Another benefit
of graph databases is that they provide declarative graph
query languages to retrieve and update information from the
persistent store, maintaining graph abstractions.

The main contribution of this article is an efficient and
scalable platform, called ProgQuery, that allows the user
to perform advanced program analyses, queries and feature
extractions, expressed by means of advanced syntactic and
semantic program properties, in a declarative and expressive
way. Our work is based on the idea that programs can be rep-
resented with graph structures that connect different syntactic
and semantic information, stored in a graph database [9].
Using our open-source system, users can write their own
queries and analyses using an expressive declarative query
language. The system is able to perform in seconds complex
analyses against huge Java programs with tens of millions of
lines of code.

The rest of the paper is structured as follows. The next
section describes a motivating example, and related work is
discussed in Section III. Section IV describes our platform.
We evaluate ProgQuery in Section V, and compare it with
the related systems. Section VI presents the conclusions and
future work.

II. MOTIVATING EXAMPLE
In order to illustrate how our system works, we analyze the
OBJ50-J Java recommendation published by the CERT divi-
sion of the Software Engineering Institute at CarnegieMellon
University [18]. That recommendation is titled ‘‘never con-
fuse the immutability of a reference with that of the referenced
object.’’ In Java, the value of final references cannot be
modified (e.g., line 10 in Figure 1), meaning that it is not
possible to change which object they point to. However,
a common incorrect assumption is that final prevents mod-
ification of the state of the object pointed to by the reference
(i.e., believing the compiler prompts an error in line 26 of
Figure 1). Therefore, many programmers improperly use
final references, when they actually want avoid mutability
of the referenced object.

Figure 2 shows how we implemented the OBJ50-J anal-
ysis in our system. As mentioned, ProgQuery models pro-
grams with different graph structures representing different
syntactic and semantic information. Those representations
are stored in a Neo4j graph database, which provides the
Cypher declarative graph query language [19]. The code
in Figure 2 is a Cypher query that uses graph-based program
representations to implement the OBJ50-J analysis. It shows
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FIGURE 1. Example Java code.

FIGURE 2. Cypher code implementing the OBJ50-J CERT CMU Java
recommendation.

an informative warning message to the user when the recom-
mendation is not fulfilled.

The Cypher code in line 01 (Figure 2) matches all
the final variables (fields, parameters and local vari-
ables) which state may be modified by a given expression
(mutatorExpr). The only variable matched is the final
points field in line 10 of Figure 1 (there is no other
final variable). The mutator expressions matched for that

variable are the method invocation in line 15 and the assign-
ment in line 26 (Figure 1). Notice that the invocation in
line 15 may modify the state of points indirectly, because
it calls clonePoints, which modifies the object referred
by its second parameter.

The with clause in line 02 is used to apply another
match to the results of the previous one. Additionally,
mutatorMethod is set to the method or construc-
tor where mutatorExpr was defined in (functional-
ity implemented by the ProgQuery’s user-defined function
getEnclMethodFromExpr).

The second match in Figure 2 gets the class
(mutatorEnclClass) and Java file (mutatorCU) where
the mutatorMethods are defined. The where clause
discards the matched subgraphs where variables are fields
(ATTR_DEF), fields in the mutator expression belong to the
implicit object1 (isOwnAccess), and the mutator method
is a constructor or another non-public method only called
by a constructor (isInitializer). The purpose of this
where clause is to tell field initialization fromfieldmutation.
If the object state is changed in or from the constructor, it is
initialization; otherwise, it is mutation. Therefore, themutator
invocation in line 15, which modifies the object state from the
constructor, is discarded.

Lines 05, 06 and 07 in Figure 2 are aimed at building and
returning the warning message. Line 05 uses the common
reduce higher order function to build a single string indi-
cating all the code locations where the final variable is
mutated. Line 06 simply sets to variableCU the file where
the final variable is defined, and line 07 returns the warn-
ing message. For the Java program in Figure 1, ProgQuery
prompts the following message:

Warning [CMU-OBJ50] The state of variable
‘points’ (in line 10, file ‘C:\. . . \Polygon.java’)
is mutated, but declared final. The state of
‘points’ is mutated in: Line 26, column 17, file
‘C:\. . . \Polygon.java’.

This motivating example shows how ProgQuery provides
multiple graph representations stored in Neo4j, which can be
used to perform program analyses such as OBJ50-J. Cypher
declarative query language facilitates making the most of the
graph representations and user-defined functions provided
by ProgQuery. Moreover, our platform provides significantly
better analysis time and scalability than the existing systems,
with no additional memory consumption (see Section V).

III. RELATED WORK
The work presented in this article is inspired by Wiggle,
a prototype source-code querying system based on the graph
data model [9]. Wiggle modifies the Java compiler to obtain

1Line 26 in Figure 1 modifies the state of the points reference
belonging to the implicit object (i.e., the object pointed by this),
somutation.isOwnAccess in line 04 of Figure 2 is true. However, if we
had ‘‘otherPoints[index] = newPoint;’’, being otherPoints
a Point2D[] parameter, mutation.isOwnAccess would be false,
because otherPoints would not necessarily point to the implicit object
(this).
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ASTs of each program and store them in a Neo4j graph
database. These persistent ASTs may be consulted using any
of the mechanisms provided by Neo4j, such as the Cypher
query language. Wiggle uses overlays as a mechanism to
express queries as a mixture of syntactic and semantic infor-
mation [20]. The prototype implementation provides limited
semantic data about type hierarchy and attribution (annota-
tion), and method calls. Information about type hierarchy and
method calls consists in specific edges connecting type and
method definitions, which are sometimes duplicated (instead
of reused) for projects with multiple files [11]. In Wiggle,
call graphs do not include constructors (just methods), and
method invocation nodes are not connected to the defini-
tion of the method being invoked. ASTs are annotated with
types represented as strings, making it difficult to obtain the
structural information of types. The implementation gathers
node type information using reflection, causing a significant
performance penalty (see Section V-E). Wiggle only supports
Java 7, so newer elements of the language (such as lambda
expressions, method references, and default methods) are not
represented. Wiggle’s authors propose the representation of
more sophisticated overlays, such as control and data flow,
to facilitate the implementation of complex code analyses [9].

Semmle CodeQL is a source-code analysis platform for
Java, C#, Python, JavaScript andC/C++ [21]. Each codebase
is created by a language-specific extractor implemented from
existing compiler front-ends, which takes program represen-
tations and stores them into a relational database. Users are
required to upload their programs from GitHub or BitBucket,
using the LTGMweb application [63]. For Java, the relational
database stores the AST, type information, and additional
metadata. AST structures are converted into tables by storing
each node as an entry, and connecting them through pri-
mary/foreign keys. Types are stored in another table, rep-
resenting their hierarchical relationships. Expressions are
attributed with their inferred types. Other tables store the
methods and constructors statically invoked by expressions,
and variables bound to their definition. Information in the
database is consulted with QL, an object-oriented variant
of the Datalog logical query language [22]. The analyses
written in QL could be run in LGTM or using plug-ins for
different IDEs such as Visual Studio, Eclipse and IntelliJ.
Although QL provides graph abstractions to consult program
representations, its storage in a relational database causes
an impedance mismatch [23], [24]. Some evaluations have
shown that graph databases perform better than relational
ones when traversing graph structures [17].

Frappé is a C/C++ source code query tool that supports
large-scale codebases [25]. A Neo4j graph database is chosen
to gain query efficiency by avoiding repeated join operations,
necessary in the relational model. Frappé provides a modifi-
cation of the Clang compiler to retrieve and store program
information. It provides some scripts that execute the Clang
modification (to insert program information) and the original
C compiler (to generate binary code). Although Frappé stores
some AST information, important nodes such as expressions

and statements are not included in the representation. It does
not include such nodes to provide good performance for large
codebases. Frappé represents node types with a string prop-
erty, but it does not support different types (subtyping poly-
morphism). A call dependency graph is provided, connecting
function nodes through calls relationships. Data dependency
information relates function and variable nodes. However,
since expressions are not included, Frappé represents neither
where a function is called, nor where a variable is written.
The isa_type edge relates functions and variables with
their types. Frappé provides no control flow analysis. Users
can write their own queries in Cypher, and run them in the
Frappé GUI. Frappé has been used to query the Linux kernel
(11.4 million lines of code), and to manage multiple source
code versions [26].

Zhang et al. propose a source code query framework to
support syntactic and semantic code queries across different
object-oriented programming languages [27]. They handle
language heterogeneity by transforming source code into a
unified abstract syntax format, using TXL [28]. Program rep-
resentations are stored in MangoDB, a Python wrapper for
MongoDB [29]. JSON documents in the database repre-
sent syntactic and semantic information of language-agnostic
programs. The semantic representations include type hierar-
chy, data dependency and method call graphs. No informa-
tion about control flow or type dependency is stored. For
source code queries, they propose JIns+, an extension of their
JIns declarative code instrumentation language [30]. Users
may use JIns+ to write their own analyses, valid for any
object-oriented language. Although expressions are stored in
the database, JIns+ does not allow queries about expressions.
Therefore, common queries such as locating expressions call-
ing a method or using a variable cannot be expressed. This
framework reports analyses results as JSON documents.

FindBugs is a static analysis tool that looks for more
than 300 different bugs in Java code [6]. Unlike other
tools, FindBugs does not try to identify all the defects in a
source program. Rather, it effectively and efficiently detects
common defects that developers will want to review and
correct. It was designed to avoid generating false warn-
ings (false positives). FindBugs implements control-flow and
intra-procedural dataflow analyses. It follows a plug-in archi-
tecture that allows users to write their own analyses (detec-
tors) in Java. Detectors are commonly implemented with the
Visitor design pattern [31]. Detectors may traverse the AST,
type hierarchies and control- and data-flow graphs. Users
can run FindBugs from the command line, and it provides
plug-ins for Eclipse, NetBeans, Ant andMaven. It also imple-
ments a GUI that supports the inspection of analysis results.
FindBugs does not store program information in a database.
Analysis results are saved as XML documents.

SonarQube is an open-source platform for continuous
inspection of code quality, which performs static code anal-
ysis to detect bugs, code smells, and security vulnerabilities
onmore than 20 programming languages [32]. It uses existing
analysis tools that derive metrics from their output, and add
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FIGURE 3. Architecture of ProgQuery.

its own additional analyses and metrics. SonarQube finds not
only bugs but also bad smells, which do not prevent cor-
rect program functioning, but usually correspond to another
problem in the system [33] (e.g., code duplication, forgotten
interfaces and orphan abstract classes). SonarQube can be
extended by implementing new Java user-defined plug-ins,
consisting of one or more analyzers. Its GUI allows hierarchi-
cal inspection of source code and provides multiple views and
code statistics (e.g., unit-test coverage, code duplications,
and documentation and coupling metrics).

Coverity is a static analysis tool that finds defects and secu-
rity vulnerabilities in source code written in Java, C#, Python,
JavaScript and C/C++ [8]. Code is processed and stored in a
database, which is consulted later to perform code analyses.
Example analyses are resource leaks, dereferences of null
pointers, memory corruptions, buffer overruns, control flow
and error handling issues, and insecure data handling. For
that purpose, inter-procedural data and control flow analyses
are implemented. Analyses are neither sound nor complete;
there may be non-reported defects (false negatives) and false
defects reported (false positives) [34]. Coverity does not
allow users to write their own analyses.

PMD is an extensible cross-language static code ana-
lyzer [35]. It finds common programming flaws, such
as unused variables, empty catch blocks, unnecessary
object creation and copy-pasted code. PMD stores neither
program information nor analysis results in a database.
Since PMD supports different languages, it provides groups
of language-specific detectors. Analyses in PMD are
expressed with rules. PDM provides an extensive API to
write customized rules, implemented either in Java or as
a self-contained XPath query. PMD builds ASTs, type

representations, and control-flow and data-flow graphs. Anal-
yses are launched from the command line, specifying the
input programs, rules to be executed and output format.

IV. PROGQUERY
Figure 3 shows the architecture of ProgQuery. The Java
programs to be processed can be taken from existing open
source repositories (e.g., GitHub, Source Forge and Bit-
bucket), or provided by the user. Java code is compiled by our
modification of the standard Java compiler. We developed a
plug-in that, besides generating code, creates seven different
graph representations for each program. These representa-
tions are overlaid, meaning that a syntactic node may be
connected to other different semantic representations through
semantic relationships, and vice versa (Section IV-B). Our
modified Java compiler creates the seven different overlaid
representations, and stores them into a Neo4j graph database.

ProgQuery users may consult the distinct graph represen-
tations for a given program in various ways. They may write
static program analyses [36], check for guideline compli-
ance [18], search for code using advanced queries [9], obtain
software metrics [37], and extract datasets with syntactic and
semantic information [38]. Our platform provides a collection
of existing services (analyses, queries, guidelines, etc.) as part
of the ProgQuery API. In this way, users may use such exist-
ing services against their Java code. The ProgQuery API also
includes helpful Neo4j user-defined functions to facilitate the
creation of new analyses (e.g., getEnclMethodFrom-
Expr and getEnclosingClass in Figure 2).

Program representations stored in Neo4j may be con-
sulted in different ways. One mechanism is Cypher,
a widespread declarative graph query language, widely used
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with Neo4j [19]. Another approach is Gremlin, a graph
traversal language that supports imperative and declarative
querying for Neo4j (among other graph databases) [39]. Prog-
Query users can also consult the graph representations in
Neo4j by using its traversal framework API, a callback-based
lazily-executed system to specify desired movements through
graphs [40].

Given Java source code and a query, ProgQuery generates
various types of output. For program analyses and guideline
compliances, ProgQuery returns a collection of warning mes-
sages to improve the input Java code. For advanced queries,
the code excerpts found (labeled with their locations) are
returned. Software data and reports are the output for metrics
requests, and datasets are returned for queries requesting
syntactic and semantic information.

A. ProgQuery JAVA COMPILER PLUG-IN
ProgQuery modifies the standard Java compiler. It provides a
ProgQueryPlugin component that can be used with any
Java 8+ SDK compiler (-Xplugin option). At compilation
time, the Neo4j connection string is passed to the plug-in,
so that it can store the syntactic and semantic graph repre-
sentations depicted in Section IV-B.

The Java compiler plug-in interface allows the user to
modify and extend its behavior by registering subscribers
to various events. Such events occur before and after every
processing stage of the compiler, per source file. These events
are parse (syntax analysis and AST creation), enter (source
code imports are resolved), analyze (semantic analysis) and
generate (code generation). Our plug-in subscribes to the
event that takes place when semantic analysis is finished
(analyze). Therefore, we intercept the compilation process
when the AST has been annotated with the type information
inferred by the semantic analyzer [41].

The annotated AST is traversed with the Visitor design pat-
tern [31].We first create the seven overlaid program represen-
tations in memory, and later store them into a Neo4j database.
We implement four different visitors. ASTTypesVisitor
translates the Java compiler AST into our AST represen-
tation, and creates the Program Dependency Graph (PDG),
Class Dependency Graph (CDG) and Call Graph repre-
sentations; CFGVisitor creates the Control Flow Graph
(CFG); and TypeVisitor and KeyTypeVisitor create
the Type Graph. The Package Graph is created with a simple
traversal of the CDG.

B. OVERLAID PROGRAM REPRESENTATIONS
One of the key features of ProgQuery is the syntactic and
semantic information provided as different graph represen-
tations. The AST is the core structure, where nodes represent
syntactic constructs, hierarchically linked through syntactic
relationships. AST nodes are also linked to other (semantic or
syntactic) nodes through semantic relationships. Therefore,
the syntactic and semantic graph representations are overlaid.
This makes it easier to express queries that combine syntactic
and semantic information, such as the one in Figure 2.

Figure 4 shows a small excerpt of the seven graph represen-
tations created by ProgQuery for the source code in Figure 1.
What follows is a brief description of such representations
(the whole ontology is detailed in Appendix A).

1) ABSTRACT SYNTAX TREE (AST)
An AST represents the syntactic information of the input
program [1]. For a given program, we create different ASTs
where the root nodes are the different compilation units,
i.e. Java files. In Figure 4, the nodes n1 and n2 repre-
sent, respectively,Polygon.java andFigure2D.java.
These two nodes are syntactically connected to the types
implemented in each file (Polygon and Figure2D).

EachAST node representing a type collects, as child nodes,
the members defined for that type. For example, the class
Polygon (n3) collects its constructor (n5), thepointsfield
(n6), and the clonePoints (n7) andgetPerimeter (n8)
methods. Child nodes of methods and constructors include
their bodies (e.g., the BLOCK n10 node), parameters (n11),
and throws clauses. Method bodies hold collections of
statements (if statement of n12, andclonePointsmethod
invocation of n14) that, in turn, may contain other statements
(n13) or expressions (n15 and n16).

We use Neo4j labels to classify the different AST node
types. COMPILATION_UNIT and BLOCK are two example
labels depicted in Figure 4.2 We also use the multiple label
capability provided by Neo4j to allow common generaliza-
tions of AST nodes [41]. For example, the assignment expres-
sion in n16 has the ASSIGNMENT label, but also the gener-
alization labels EXPRESSION, AST_NODE and PQ_NODE.
This polymorphic generalization design supported by the
multiple label feature is valuable to improve the expressive-
ness of ProgQuery (Section V-C).
Syntactic relationships between nodes are also labeled in

Neo4j. For example, node n1 in Figure 4 is connected to node
n3 through a HAS_TYPE_DEF labeled relationship.2

2) CONTROL FLOW GRAPH (CFG)
CFGs represent the execution paths that may or must
be traversed when the program is run. First, it connects
method or constructor definitions to their first statement
(e.g., CFG_ENTRIES connects the n5 constructor to n12,
its initial statement). When there is no jump, a statement is
connected to the following one with a NEXT_STMT relation-
ship. For example, the clonePointsmethod invocation in
line 15 of Figure 1 (n14 in Figure 4) is connected to a CFG
semantic node n18 through NEXT_STMT. The semantic node
n18 represents the end of the non-exceptional execution of a
method (CFG_NORMAL_END).

Different control flow statements (e.g., if, while and
for) involve a jump in the execution flow. For such cases,
the NEXT_STMT_IF_TRUE and NEXT_STMT_IF_FALSE
relationships represent the conditional changes in the

2We do not show all the labels for the sake of readability; see Appendix A
for detailed information.
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FIGURE 4. Seven different graph representations for the Java program in Figure 1.

execution flow (an example is the connections between the
if statement in n12 and the n13 and n14 AST nodes).
CFG also models the exceptional jumps performed by Java

checked exceptions,3 and assert and throw instructions.
For that purpose, ProgQuery defines CFG nodes representing
exceptional method termination, and exceptions handled in a
catch orfinally block. For exception handling, the static
types of the exceptions thrown and caught are analyzed,
connecting them only if they could match at runtime—these
kinds of connections represent may relationships, whereas
NEXT_STATEMENT and CFG_ENTRIES represent must
relationships. In Figure 4, the throw statement represented
by n13 is connected to the CFG_EXCEPTIONAL_END node
n17 through amust THROWS relationship, because no catch
or finally blocks are used to handle the exception.

3In Java, unchecked exceptions are RuntimeException, Error and
their subclasses.

3) PROGRAM DEPENDENCY GRAPH (PDG)
PDGs in ProgQuery provide information about when vari-
ables (fields, parameters and local variables) and the state of
the object they point to (in case variables are references) are
read or modified. In this graph, most relationships represent
must information, meaning that, if a statement is executed,
it will certainly read/modify a variable.4 In Figure 4, the pts
parameter in n11 is read by (USED_BY) the pts expression
in n15, passed as the first argument to the clonePoints
invocation. Likewise, the points field of the example pro-
gram (n6) is MODIFIED_BY the assignment modeled by the
n16 AST node.
As mentioned, our PDG representation also provides

information about when the state of the object pointed
by a reference may or must be changed. This is a

4This information could be combined with the CFG to know if the
statements must or may be executed.
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valuable information for many analyses that consider
object mutability [36]. For that purpose, ProgQuery pro-
vides the STATE_MODIFIED_BY and STATE_MAY_BE_
MODIFIED_BY relationships. The former connects a
variable to a statement or expression that certainly modifies
the state of the object. The latter represents that object
modification may occur, depending on the execution flow.
Moreover, this information is inter-procedural, meaning that
method bodies are analyzed to see if they could modify the
state of their parameters. For instance, the object pointed
by points (n6) may be modified in the clonePoints
invocation (n14), because points is passed as the second
argument and it could be modified in the for loop inside
clonePoints (line 21, Figure 1).

4) CALL GRAPH
This representation provides information about method
and constructor invocations in the source code. Method/
constructor definition nodes are connected through CALLS
relationships to all the invocations in their bodies. In Figure 4,
the constructor represented by n5 is linked to the
clonePoints invocation in n14. Method/constructor invo-
cations are also linked with their static definition through
a HAS_DEF relationship (e.g., one connection between n14
and n7). In this way, Call Graphs allow the user to easily
navigate through the different method/constructor definitions
and invocations in the code.

Call Graphs in ProgQuery also consider polymorphic
invocations. When the invoked method has been overrid-
den, all the method implementations that may be called are
obtained with the MAY_REFER_TO relationship. On the con-
trary, the REFERS_TO arc connects a method invocation to
the only possible method definition that could be invoked
(e.g., the second link between n14 and n7).

5) TYPE GRAPH
Type graphs represent all the type information in the source
program. All the expression nodes are linked with their static
type. For example, the assignment expression represented
by n16 is connected to its type through the ITS_TYPE_IS
relationship. The type is represented with a new n20 node
of the type graph. n20 represents an array type, linked to
its ELEMENT_TYPE (Point2D). In ProgQuery, all the
instances of the same type are represented with the same node
in the type graph.

Type graphs also model hierarchical relationships among
types, making it easy to traverse classes, interfaces and
enumerations in the source program. For that purpose,
ProgQuery provides the IS_SUBTYPE_IMPLEMENTS and
IS_SUBTYPE_EXTENDS relationships (the Polygon
class of our example, n3, implements the Figure2D inter-
face, n4). Information about method overriding is also
offered. The OVERRIDES relationship links method imple-
mentations with the overridden method definitions (if any)—
e.g., connection between n8 and n9.

Point2D is not a class defined by the programmer.
It belongs to the standard java.awt.geom Java package,
so its source code is not included in the program represen-
tation. This is the reason why ProgQuery creates the new
n19 node as part of the Type Graph, not included in the
AST. Therefore, ProgQuery provides information not only
for the source code, but also for the standard types used in
the program. For example, n19, n24 and n25 represent the Java
Point2D, Object and Cloneable types, not defined in
the source program. For these three types, ProgQuery sets to
false their isDeclared property.

6) CLASS DEPENDENCY GRAPH (CDG)
The CDG representation is aimed at defining the usage rela-
tionships among types. The only relationship provided is
USES_TYPE, which connects two type (class, interface or
enumeration) definitions. T1 is connected to T2 when T1
somehow depends on T2. This dependence means that T1
defines a local variable, field or parameter of type T2, extends
or implements T2, defines a method returning T2, etc. In our
example, Polygon uses Figure2D and Point2D. Like-
wise, Point2D uses Object and Cloneable.

7) PACKAGE GRAPH
The Package Graph gives information about package depen-
dency, and joins up all the ASTs in a program. This rep-
resentation creates a new package node for each package
defined in the source code (n22 and n23 in Figure 4), which
is in turn linked to their compilation units (n1 and n2). The
DEPENDS_ON_PACKAGE relationship links two packages
when one depends on the other. This dependency relationship
is derived from the USES_TYPE class dependency defined in
the CDG.

ProgQuery also creates a root node for each pro-
gram inserted in the system. The n21 PROGRAM node
in Figure 4 represents the root node for the source
code in Figure 1. This node is connected through
PROGRAM_DECLARES_PACKAGE to all the package nodes
defined in the program (n22 and n23). With this design, each
program is modeled with a graph built with seven different
overlaid representations, where PROGRAM can be thought as
the root node of the combined AST.

V. EVALUATION
In this section, we evaluate our platform and compare it
with related approaches. We conduct various experiments to
address the following research questions about our system:

1) Can the ontology defined in Appendix A be used to
express real static program analyses?

2) Does ProgQuery provide reduced analysis times com-
pared to existing approaches?

3) Does it provide better scalability for increasing pro-
gram sizes?

4) Does it provide better scalability for increasing analysis
complexity?
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TABLE 1. Programs selected from the CUP GitHub Java corpus (percentile and position refer to the non-empty lines of code).

5) Is it able to perform complex analyses against huge
Java programs in a reasonable time?

6) Can program analyses be expressed succinctly, in a
declarative manner, and using standard query-language
syntax?

7) Are there any drawbacks of our system, compared to
related approaches?

A. METHODOLOGY
We present the selected programs, analyses, and systems to
be measured in our experiments. Afterwards, we describe
how execution time and runtime memory consumption is
measured. We then depict how we configured each system
to run the experiments.

1) PROGRAMS USED
We took the programs to be analyzed from the GitHub Java
corpus collected by the CUP research group of the Univer-
sity of Edinburgh [42]. This corpus provides 14,735 projects
with different sizes, taking all the GitHub Java projects
with at least one fork. This code has already been used
in other research works, such as learning coding conven-
tions [43], API mining [44], and database framework usage
analysis [45].

We want to use programs of different sizes to study how
the evaluated systems scale to increasing program sizes.
For that purpose, we sorted the programs by their num-
ber of non-empty lines of code and divided them into nine
parts, taking one program from each group. In this way,
we have nine programs of different sizes. Table 1 shows
the selected programs, a brief description, their percentile
in the CUP corpus, and the number of non-empty lines
of code. Considering all the Java programs in GitHub,
the biggest program selected (NFEGuardianShared) is at the
92th percentile.

2) ANALYSES IMPLEMENTED AS QUERIES
We took different analyses from the Java coding guidelines
collected by the CERT division of the Software Engineer-
ing Institute at Carnegie Mellon University [18]. The CERT

division is aimed at improving security and resilience of
computer systems [46]. Among other tasks, CERT identifies
coding practices that can be used to improve the quality of
software systems, classifying them as rules or recommen-
dations [47]. These coding practices are taken from differ-
ent programming language experts and other sources such
as [36], [48] and [49]. Those recommendations are later
discussed and revised by the programming community [18].

The CERT Java coding catalog contains more than 83 rec-
ommendations, divided into five different categories: pro-
gramming misconceptions, reliability, security, defensive
programming and program understandability. We selected
13 recommendations to code them as static analyses, choos-
ing at least two recommendations from each category. The
following enumeration describes each recommendation, its
category and identifier, and its original source.

1) MET53-J (program understandability) [50]. Ensure
that the clone method calls super.clone().
clone may call another method that transitively calls
super.clone().

2) MET55-J (reliability) [36]. Return an empty array
or collection instead of a null value for methods
that return an array or collection. We check all the
return statements and all the types implementing the
Collection interface.

3) SEC56-J (reliability) [48]. Do not serialize direct
handles to system resources. Serialized objects can
be altered outside of any Java program, imply-
ing potential vulnerabilities. We detect types imple-
menting Serializable with non-transient fields
derived from system resources such as File,
NamingContext and DomainManager.

4) DCL56-J (defensive programming) [36], [48], [50].Do
not attach significance to the ordinal associated with
an enum. If the ordinal method is invoked, this
analysis encourages the programmer to replace it with
an integer field.

5) MET50-J (program understandability) [36], [50].
Avoid ambiguous or confusing uses of overloading.
This analysis detects classes with overloaded methods
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with a) the same parameter types in a different
order; or b) four or more parameters in different
implementations.

6) DCL60-J (defensive programming) [49], [51]. Avoid
cyclic dependencies between packages. Cyclic depen-
dencies cause issues related with testing, maintainabil-
ity, reusability and deployment.

7) OBJ54-J (programming misconceptions) [36]. Do not
attempt to help the garbage collector by setting local
reference variables to null. This analysis checks the
assignment of null to local variables that are no
longer needed.

8) OBJ50-J (programming misconceptions) [36], [48].
Never confuse the immutability of a reference with that
of the referenced object. It is checked that the states of
objects pointed by final references are not modified
(example in Section II).

9) ERR54-J (reliability) [48]. Use a try-with-resources
statement to safely handle closeable resources.
We detect when a variable that implements
AutoCloseable is not initialized in a try-
with-resources statement, and the code may throw an
exception before calling close. In that case, a try-
with-resources statement is advised to the programmer.

10) MET52-J (security) [52]. Do not use the clone
method to copy untrusted method parameters. Inappro-
priate implementations of the clone method return
objects that bypass validation and security checks. That
vulnerable implementation of clone is commonly
hidden by the attacker in derived classes of the cloned
parameter. Thus, the analysis checks when clone is
invoked against a parameter in a public method of a
public class, and the type of the parameter is notfinal
(overridable).

11) DCL53-J (defensive programming) [36]. Minimize the
scope of variables. We search for fields that are
unconditionally assigned before their usage, for all the
methods in their classes. The analysis encourages the
programmer to use local variables instead.

12) OBJ56-J (security) [53]. Provide sensitive mutable
classes with unmodifiable wrappers. When a given
class is mutable because of m modifier methods, it is
checked that one derived class provides an immutable
wrapper. In such wrapper, those m methods must be
overridden with implementations where the state of the
object is not modified.

13) NUM50-J (program understandability) [48]. Convert
integers to floating point for floating-point operations.
The analysis checks division expressions where the
two operands are/promote to integers, and the result
is assigned to a float or double. In that scenario,
there might be loss of information about any possible
fractional remainder.

We implemented these 13 program analyses in ProgQuery
(the Cypher code can be download from [54]). Therefore,
the answer to Research Question 1 (Section V) is that the

ontology defined in Appendix A can be used to express real
program analyses.

3) SYSTEMS MEASURED
We included in our evaluation different systems related to our
approach. The analyses described in the previous subsection
were coded for such systems in order to compare them. These
are the selected systems:
• Wiggle 1.0 [9], a source-code querying system based
on a graph data model. Wiggle represents programs
as graph data models, and stores them in Neo4j.
The Cypher graph query language is used to express
advanced queries, including syntactic (mainly) and some
semantic properties of programs. We use Neo4j Com-
munity 3.5.6 server and Neo4j 3.3.4 embedded. The
former mode provides direct use from the Java client,
loading the database engine in the same JVM process
as the client application. The latter mode runs Neo4j
as a separate process (DataBase Management System,
DBMS) via RESTful services [55].

• Semmle CodeQL 1.20, a code analysis platform to per-
form detailed analyses of source code [21]. Semmle
allows writing queries in QL, an object-oriented variant
of the Datalog logical query language [56]. Semmle
CodeQL stores programs in a PostgreSQL relational
database. It promotes variant analysis, the process of
using a known vulnerability as a seed to find simi-
lar problems in the code [57]. Semmle provides a set
of existing analyses to facilitate the variant analysis
approach.

• ProgQuery 1.1. We include the latest version of our
system in the evaluation. ProgQuery is measured with
the same two Neo4j versions we used to measure Wig-
gle: Neo4j Community 3.5.6 server and Neo4j embed-
ded 3.3.4.

4) DATA ANALYSIS
The execution time of a Java program is affected bymany fac-
tors such as just-in-time (JIT) compilation, hotspot dynamic
optimizations, thread scheduling and garbage collection. This
non-determinism at runtime causes the execution time of
Java programs to differ from run to run. For this reason,
we use the statistically rigorous methodology proposed by
Georges et al. [58]. To measure execution time and runtime
memory consumption, a two-step methodology is followed:
1) We measure the execution time of running the same

programmultiple times. This results in pmeasurements
xi with 1 ≤ i ≤ p.

2) The confidence interval for a given confidence level
(95%) is computed to eliminate measurement errors
that may introduce a bias in the evaluation. The compu-
tation of the confidence interval is based on the central
limit theorem. That theorem states that, for a suffi-
ciently large number of samples (commonly p ≥ 30),
x (the arithmetic mean of the xi measurements) is
approximately Gaussian distributed, provided that the
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FIGURE 5. Dependency of Java compiler memory (left) and iterations per transaction (right) on insertion time for Neo4j embedded (left) and server
(right), when inserting the Frankenstein program in Table 1.

samples xi are independent and they come from the
same population [58]. Therefore, taking p = 30, we can
compute the confidence interval [c1, c2] using the Stu-
dent’s t-distribution as [59]:

c1 = x − t1−α/2;p−1
s
√
p

c2 = x + t1−α/2;p−1
s
√
p

where α = 0.05 (95%); s is the standard deviation of
the xi measurements; and t1−α/2;p−1 is defined such
that a random variable T , which follows the Student’s
t-distribution with p − 1 degrees of freedom, obeys
Pr[T ≤ t1−α/2;p−1] = 1 − α/2. In the subsequent
figures, we show the mean of the confidence interval
plus the width of the confidence interval relative to the
mean (bar whiskers). If two confidence intervals do not
overlap, we can conclude that there is a statistically sig-
nificant difference with a 95% (1−α) probability [58].

Memory consumption is measured following the same
two-step methodology. Instead of measuring execution time,
we compute the maximum size of working set memory used
by the process since it was started (the PeakWorkingSet
property) [60]. The working set of a process is the set of
memory pages currently visible to the process in physical
RAM memory. The PeakWorkingSet is measured with
explicit calls to the services of the Windows Management
Instrumentation infrastructure [61].

All the tests were carried out on a 2.10 GHz Intel(R)
Xeon(R) CPU E5-2620 v4 (6 cores) with 32GB of RAM
running a 64-bit version of Windows 10.0.18362 Profes-
sional. We used Java 8 update 111 for Windows 64 bits. The
benchmarks were executed after system reboot, removing the
extraneous load, and waiting for the operating system to be
loaded (until the CPU usage falls below 2% and remains at
this level for 30 seconds). To compute average percentages,
factors and orders of magnitude, we use the geometric mean.

5) EXPERIMENTAL ENVIRONMENT
To measure the systems described in Section V-A3, vari-
ous configuration variables need to be provided (e.g., heap

memory size of Neo4j, number of insertions per transaction,
and heap memory used by the Java virtual machine). Runtime
performance of those systems depend on the values of such
variables. Therefore, we need to find the values for which the
selected systems perform optimally, in the above mentioned
computer.

We followed the following algorithm to find the optimal
values for the configuration variables. First, we fix all the
variables to their default values. Then, for each variable,
we analyze the influence of that variable on the system per-
formance. We select the value when the system converges
to its best performance. This process is repeated for all the
variables, until the system performance cannot be further
optimized.

Figure 5 shows an example of how two variables influence
on runtime performance of the system. In the left-hand side,
it is showed how the heap size of our modification of the Java
compiler influences on insertion time (Neo4j embedded). The
right-hand side illustrates how insertion times in Neo4j server
depend on the number of insertions per transaction done by
ProgQuery and Wiggle. Orange lines in Figure 5 indicate
the execution time with the default values; red dots specify
the value chosen by our algorithm. We can see how runtime
performance is improved in both scenarios.

The following enumeration lists the variables that influ-
ence on the performance of the selected systems, and the
values we get by applying our algorithm:
• Neo4j page cache size (dbms.memory.page-
cache.size): 16.06 MB for insertion and
analysis.

• Number of insertions per transaction (operations-
PerTransaction): 500 insertions per transaction.

• For insert operations, the startup memory used by our
modified Java compiler (-J-Xmx and -J-Xms): 2 GB.

• For executing queries, maximum (-Xmx) and initial
(-Xms) heap memory used by the Java Virtual Machine:
we set both variables to 1 GB.

• Memory for running queries of Semmle CodeQL: 1 GB.
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FIGURE 6. Average analysis execution time for increasing program sizes (execution times are relative to ProgQuery embedded).

• Initial (dbms.memory.heap.initial_size) and
maximum (dbms.memory.heap.max_size) heap
memory size used by Neo4j. For both variables,
we choose 500 MB for insertion operations and 1 GB
for analyses (queries).

B. ANALYSIS TIME
We measure and compare runtime performance of the sys-
tems described in Section V-A3. Their scalability related to
program size and analysis complexity is also discussed.

1) INCREASING PROGRAM SIZES
The first comparison, illustrated by Figure 6, presents execu-
tion time of analyses for increasing program sizes. We take
the size of a program to be the number of its nodes plus the
number of its arcs, using Wiggle’s AST representation. The
values shown are the average times for all the analyses in
Section V-A2, relative to ProgQuery embedded.
For all the programs, ProgQuery server outperforms the

rest of systems. It is 9.2 times faster than its embedded ver-
sion. On average, ProgQuery server performs, respectively,
48, 53 and 245 times better than Semmle, Wiggle server and
Wiggle embedded.

To analyze the scalability of the systems, Figure 7 dis-
plays the absolute execution time trends when program sizes
increase. All the execution times grow as program sizes
increase, but ProgQuery is the systemwith the lowest growth.
ProgQuery server, ProgQuery embedded, and Semmle show
linear scalability (p-values of linear regression models are
lower than 0.01), and their slopes are, respectively, 16,
29 and 929.

Figure 7 shows how Wiggle performs better than
Semmle for shorter programs, but its execution time grows

FIGURE 7. Execution time (seconds) trend for increasing program sizes
(values shown are the geometric mean of execution times for all the
analyses executed against the given program).

significantly higher than Semmle, as program size increases.
It seems that the database start-up cost causes an initial
performance penalty, more noticeable for small programs.
Moreover, the additional semantic information stored by
Semmle may cause a decrease in the number of accesses to
the database, providing better results when analyzing bigger
programs.

Even though Wiggle and ProgQuery use the same persis-
tence system (Neo4j), they show significantly different scal-
abilities. This is caused by the different information stored
by the two systems. Since ProgQuery stores more semantic
information for each program, it reduces the cost of com-
puting that information at runtime. This cost becomes more
important as program size grows.

These data provide a response to Research Question 3
(Section V): ProgQuery scales significantly better than
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TABLE 2. Program representations used by the different analyses and their level of complexity.

the other systems to increasing program sizes (we answer
Research Question 2 in the following subsection).

2) INCREASING COMPLEXITY OF ANALYSES
For each system, we study how the analysis complexity
influences on its execution time. We estimate the complexity
of each analysis by counting the number of different pro-
gram representations (Section IV-B) consulted in the analysis.
Therefore, we identify three levels of complexity:
• AST+1 (easiest analyses). These analyses use the syn-
tactic representation (AST) and atmost another semantic
representation.

• AST+2 (medium level of complexity). The AST plus
two other semantic representations are queried in these
analyses.

• AST+3+ (most complex analyses). These analyses use
the AST and three or more semantic representations.

Table 2 shows the program representations used by each
analysis and the level of complexity assigned. All the anal-
yses use the AST, since they all start by consulting syntac-
tic information. The analysis that uses most representations
(DCL60-J) consults five out of seven.

Figure 8 shows the execution times for the three levels of
complexity identified. Values shown are the average analysis
times for all the programs in Section V-A1. ProgQuery server
is the system with the best performance, for all the levels
of complexity—in fact, ProgQuery server shows the lowest
execution times for each single analysis executed. Moreover,
Wiggle server is the only system that performs better (54%)
than ProgQuery embedded, only for the easiest (AST+1)
analyses. For the remaining cases, ProgQuery embedded out-
performs the other systems.

Therefore, the answer to Research Question 2 (Section V)
is that ProgQuery server analysis times are significantly
lower than the existing systems, for all the analysesmeasured.
This response also holds for the embedded version, if we
compare it with systems that use an embedded database
instead of a DBMS (i.e.,Wiggle embedded and Semmle).
Figure 9 shows how execution time depends on

the complexity level of analyses for all the systems.

FIGURE 8. Average execution time for increasing analysis complexity
(execution times are relative to ProgQuery embedded).

FIGURE 9. Execution time (seconds) trend for increasing analysis
complexity (values shown are the geometric mean of execution times of
all the programs of the given complexity).

Analysis time grows as complexity increases. The slope
of analysis time growth (linear regression) for Semmle
and Wiggle is, respectively, 1.76 and 1.97 orders of mag-
nitude higher than ProgQuery. Therefore, the answer to
Research Question 4 (Section V) is that ProgQuery scales
significantly better than Semmle and Wiggle for analysis
complexity.
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For the easiest analyses, Wiggle performs better than
Semmle. For complex queries, however, it is the other way
around. Since most of the information inWiggle is syntactic,
easy analyses just consult information in the database (most
of the information searched belongs to the AST). As more
semantic information is required, Wiggle analyses need to
compute that information from the existing one, producing
a runtime performance cost. In ProgQuery, that computation
is not necessary, because it provides more semantic represen-
tations (Section IV-B). Finally, it seems that Semmle’s logical
query languageQLmanages to reduce the number of accesses
to the relational database in complex analyses, performing
better thanWiggle.

3) LIMIT VALUES
We also measure the systems’ capability to perform analyses
against huge programs. By using the Google’s BigQuery
project [10], we identified the biggest Java project in GitHub
(Medicayundicom), which has 18M lines of code. Then,
we measure analysis time for all the analyses in Section V-A2
against such a huge project. Since Medicayundicom does not
provide maven pom files to compile the project (a require-
ment of all the systems evaluated), we combine different
existing Java projects into a single one, until the new project
reaches 18M lines of code.

TABLE 3. ProgQuery execution time (seconds) for analyses in
Section V-A2, run against a Java program of 18M lines of code.

ProgQuery is the only system that runs all the analyses for
that program. Both Semmle and Wiggle prompted memory
errors at insert or analysis time, and hence analyses could
not be run. Table 3 shows ProgQuery analysis times for all
the queries, under the configuration settings described in
Section V-A5. That table gives us the response to Research
Question 5 (Section V): ProgQuery is able to run all the
analyses measured against a huge program with an average
execution time of 53 seconds, while most of the analyses are
executed in tens of seconds.

We can see in Table 3 that there is not a strong correlation
between ProgQuery analysis complexity and execution time.
This is due to two factors. First, ProgQuery provides much
semantic information that does not need to be computed.

Second, the overlaid representations offer interconnected
nodes of different kinds, so that queries can combine different
information with no additional performance cost. Therefore,
execution time depends on the number of nodes consulted (of
any representation), rather than on the kind of information
consulted.

C. PROGRAM ANALYSIS EXPRESSIVENESS
Both Wiggle and ProgQuery use Cypher, a declarative graph
query language, originally intended to be used with the Neo4j
database [19]. Its design is focused on providing the power
of SQL, but applied to databases built upon the concepts
of graph theory. Cypher, together with PGQL and G-Core,
represent the baseline for GQL, the upcoming ISO standard
graph query language [62].
Semmle provides the QL object-oriented declarative query

language [56]. Its syntax is similar to SQL, but its semantics
is based on Datalog, a declarative logic programming lan-
guage [22]. QL is the way Semmle provides graph-based
abstractions, since graphs are translated into a relational
database. On the contrary,Wiggle and ProgQuery store graph
representations directly in a Neo4j database, avoiding that
impedancemismatch [24]. Since graph abstractions aremain-
tained in the persistent storage, the user may utilize different
mechanisms to access such graph program representations.
For example, Neo4j can be accessed with mechanisms other
than Cypher, such as the Gremlin programming language and
the Neo4j traversal framework Java API.

Table 4 presents the number of tokens (lexical elements),
AST nodes and lines of code of the queries used to write all
the analyses for the three different systems. These measures
are an estimate of how much code is needed to write the
different analyses in each system.We can see howProgQuery
is the system that needs less code to express the analyses.
Even though ProgQuery and Wiggle use the same language
(Cypher), on average ProgQuery requires 18% the code used
by Wiggle. Moreover, the code in Semmle is almost 2 times
the code in ProgQuery.

These differences among analysis code are mainly
caused by the information stored by the systems. Since
ProgQuery stores seven different program representations
(Section IV-B), analyses do not need to use additional code to
compute such information, reducing the length the code. This
fact also causes that the source code of ProgQuery analyses is
not increased frommedium (AST+2) to complex (AST+3+)
complexities, unlike the other systems (Table 4).
After this study about expressiveness, we can answer

Research Question 6 (Section V). ProgQuery provides an
expressive and declarative mechanism to express program
analysis. Although no standard graph query language exists
yet, the language used by ProgQuery represents a strong
influence on the upcoming standard.

D. MEMORY CONSUMPTION
Figure 10 shows the average RAM memory consumed by
the five systems evaluated, under the configuration settings
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TABLE 4. Number of tokens (lexical elements), AST nodes, and lines of code of the queries used to write all the analyses in the different systems.

FIGURE 10. RAM memory consumed at analysis execution.

described in Section V-A5. ProgQuery embedded is the sys-
tem that consumes fewer resources (Wiggle embedded and
Semmle consume 22% and 42% more memory). The extra
semantic information stored by ProgQuery in the database
causes the lower consumption of RAM memory resources,
which the other systems use to compute such information.
The same difference appears whenwe compare the twoNeo4j
server systems: Wiggle consumes 5% more memory than
ProgQuery. The difference between ProgQuery server and
Semmle (almost one factor) is caused by the memory con-
sumption of Neo4j server, when compared to its embedded
version: 1 GB.

Since ProgQuery stores more information in the database
that the other systems, we also compare the sizes of each
database. The average database sizes per program for Prog-
Query are, respectively, 25% and 97% greater than Semmle
and Wiggle.

E. INSERTION TIME
ProgQuery provides runtime performance and expressiveness
benefits mainly because of the additional program represen-
tations stored for each program. However, the process of

computing that supplementary information at compile time
plus its storage in the database involve extra insertion time.
For this reason, we measure insertion time for all the systems
but Semmle. We could not measure Semmle because it only
provides insertion through its LGTM web application [63].
The user provides a code repository identifier, and LGTM
compiles the program, returning the relational database file
containing the program representation.

In Figure 11, we can see how ProgQuery server is the
systemwith the highest insertion time: on average, 60%more
time than the same version for Wiggle. This difference is
caused by the additional program representations stored in
our system. However, as program size grows, the difference
between ProgQuery server andWiggle server decreases. This
is because of a separate optimization we employ at compile
time, based on avoiding the use of reflection [60] performed
by Wiggle (Section III).

For the embedded versions, ProgQuery performs slightly
better thanWiggle. Average insertion times forWiggle are 6%
higher. Our optimization makes ProgQuery perform better,
even though it inserts more nodes and arcs thanWiggle.
Figure 11 also displays compilation time used by the orig-

inal Java compiler (without our plug-in). By comparing that
value with the rest of measures, we can estimate the time each
system needs to create the representations and store them
in the database. Compilation time represents 17.8%, 11.8%,
16.8% and 7.4% of the overall insertion time for, respectively,
Wiggle embedded andWiggle server, and ProgQuery embed-
ded and ProgQuery server.

Figure 12 shows insertion times per node or arc stored.
This figure enables us to analyze the performance of each
system relative to the information stored. We can see how
our optimization makes our server to be more efficient than
Wiggle (18% faster for server and 101% for embedded),
when measuring insertion time per element stored. Neo4j
server seems to perform additional operations at insertion to
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FIGURE 11. Insertion times for increasing program sizes, relative to ProgQuery server.

FIGURE 12. Insertion times per node/arc for increasing program sizes, relative to ProgQuery server.

optimize queries, so our optimization is more evident in the
embedded version than in the server one.

Research Question 7 (Section V) can be answered after
analyzing runtime memory consumption and insertion time.
The main drawback of ProgQuery is the increase of insertion
time, but only for the server version. The average insertion
time increase is 60%, but this drops as program size grows.
Another minor drawback is database size, which shows
increases from 25% up to 97%.

VI. CONCLUSION
ProgQuery shows how overlaid graph representations of syn-
tactic and semantic information of Java source code can be
used to efficiently perform advanced source code analyses.
By storing those graph representations in a Neo4j database,
average analysis times range from 48 to 245 times faster than
the related systems. Our platform scales better to increasing
program sizes and query complexity. Moreover, ProgQuery
can analyze huge Java programs in tens of seconds, whereas
the other alternatives exhaust memory. For all the analyses
coded, ProgQuery seemed to be more expressive than the
other systems.

These benefits are partially due to the additional semantic
information calculated and stored by our system. The compu-
tation and storage of that supplementary information involves
60% insertion time increase, but only when the Neo4j server
database is used. Likewise, average database size grows from
25% to 97%. However, these penalties are much lower than
the average analysis time benefits obtained (from 5× to 25×).
We are currently developing a web application to offer

the services implemented by ProgQuery online. Users may

upload their code or take it from an existing repository, and
execute their analyses and queries in Cypher. Existing analy-
ses and queries will also be provided. We are also developing
various analyses described by Joshua Bloch for effective
Java programming [36]. We plan to use ProgQuery for shar-
ing syntactic and semantic program information of existing
open-source repositories over the web [64]. ProgQuery will
automatically download the source code, compile it, populate
a graph database with syntactic and semantic representations,
and provide that information online. This can be used for
web-based queries, or simply downloaded in XML form.
ProgQuery will also be used to extract information of Java
programs, and use it to create predictive models for different
scenarios [38].

The source code and binaries of our platform, all the analy-
ses and the code corpus used to evaluate the systems, and the
assessment data obtained in this work are available for down-
load at http://www.reflection.uniovi.es/bigcode/download/
2020/ieee-access

APPENDIX A
PROGRAM REPRESENTATIONS
In this appendix, we describe the ontology defined to repre-
sent syntactic and semantic information of Java programs.

A. NODES
Figure 13 shows the nodes used for the seven graph
representations described in Section IV-B. We use the
multi-label capability of Neo4j to assign multiple types
(subtyping polymorphism) to a single node. For exam-
ple, a METHOD_INVOCATION node is also classified as
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FIGURE 13. Labels defined to categorize the nodes used for the different Java program representations.

CALL, EXPRESSION, AST_NODE and PQ_NODE. All
the nodes in ProgQuery hold the PQ_NODE label. Nodes
belonging to AST, Control Flow Graph, Program Depen-
dency Graph, Package Graph and Type Graph are labeled
with, respectively, AST_NODE, CFG_NODE, PDG_NODE,
PACKAGE_NODE and TYPE_NODE. The Call Graph and
Class Dependency Graph representations define no new
nodes (only relationships).

B. ABSTRACT SYNTAX TREE
The syntactic information is represented with the AST. This
is the main representation in ProgQuery. It provides 67 labels
for 56 nodes (Figure 13), 100 relationships and 26 prop-
erties. For the sake of readability, we do not include them
in this document—they define common syntax elements of
an object-oriented language [41]. We detail all the nodes,
relationships and properties used to represent the AST in [65].

C. CONTROL FLOW GRAPH
These are the nodes of the CFG:

• CFG_NORMAL_END: endpoint of the control flow
that represents the normal completion of the method/
constructor execution.

• CFG_ENTRY: starting point of the control flow con-
nected to the first statement of the method/constructor.

• CFG_EXCEPTIONAL_END: endpoint of the control
flow; it represents the abrupt completion of the
method/constructor execution caused by an exception.

• CFG_LAST_STATEMENT_IN_FINALLY: artificial
statement created to model the statement just before
exiting the finally block.

We now describe the relationships of CFG. Table 5
defines their domain (source node), range (target node) and
cardinality.
• CFG_ENTRIES: relates a callable definition to the entry
point of its control flow.

• CFG_END_OF: connects the endpoint of the control
flow to themethod/constructor definition that creates the
flow path.

• CFG_FINALLY_TO_LAST_STMT:relates afinally
block to an artificial statement representing the flow just
before exiting the finally block.

• CFG_NEXT_STATEMENT: connects one statement to
the following one, when no jump exists.

• CFG_NEXT_STATEMENT_IF_TRUE: relates a state-
ment that bifurcates the control flow to the next one,
when the condition holds.

• CFG_NEXT_STATEMENT_IF_FALSE: relates a state-
ment that bifurcates the control flow to the next one,
when the condition does not hold.

• CFG_FOR_EACH_HAS_NEXT: relates for-each state-
ments to the first enclosed statement to be executed if
there is any element to iterate.

• CFG_FOR_EACH_NO_MORE_ELEMENTS: relates for-
each statements to the statement outside the loop
to be executed if there are no more elements to
iterate.
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TABLE 5. Relationships defined for CFGs.

TABLE 6. Properties defined for CFGs.

• CFG_SWITCH_CASE_IS_EQUAL_TO: relates a
switch statement to the statement to be executed when
a case expression is matched.

• CFG_SWITCH_DEFAULT_CASE: relates a switch
statement to the statement to be executed if no case
expression is matched.

• CFG_AFTER_FINALLY_PREVIOUS_BREAK: the
last statement in a finally block is connected to the
statement to be executed in case the try block contains
a break statement.

• CFG_AFTER_FINALLY_PREVIOUS_CONTINUE:
the last statement in a finally block is connected
to the statement to be executed in case the try block
contains a continue statement.

• CFG_NO_EXCEPTION: relates the last statement in a
finally block to the statement to be executed if no
exceptions are thrown.

• CFG_IF_THERE_IS_UNCAUGHT_EXCEPTION:
relates a catch statement or the last statement in a
finally block to the statement to be executed if a
thrown exception is not caught.

• CFG_CAUGHT_EXCEPTION: relates a catch state-
ment to its enclosed local variable if, considering the
hierarchical type information, the exception could be
caught.

• CFG_MAY_THROW: relates any statement that may
throw an exception to statements to be executed if so.

• CFG_THROWS: relates a throw statement to the state-
ment to be executed after the exception is thrown.

These are the properties of the CFG nodes and relation-
ships (see details in Table 6):
• mustBeExecuted: holds whether a statement is
unconditionally executed regardless the execution path.

• exceptionType: string holding the fully qualified
name of the exception type to be thrown.

• methodName: string holding the fully qualified name
of the method that may raise the checked exception,
if any.

• label: string holding the label name (if any) of
the break/continue statement that causes the
control-flow jump.

• caseIndex: integer value representing the index of
the case (among all the other cases contained in the
switch) to be executed.

• caseValue: string representing the expression of the
case to be executed.

D. CALL GRAPH
No new nodes are defined for the Call Graph. These are the
Call Graph relationships (detailed in Table 7):
• CALLS: relates a callable definition to the method/
constructor invocations in its body.

• HAS_DEF: connects invocations to the static definition
of the method/constructor invoked.
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TABLE 7. Relationships defined for Call Graphs.

• MAY_REFER_TO: when a method is overridden, this
relationship connects the invocation to the method defi-
nitions that may be called.

• REFERS_TO: when only one method/constructor may
be called, REFERS_TO connects the call to the defini-
tion to be invoked.

The only property defined is isInitializer for
CALLABLE_DEF nodes (one-cardinality and Boolean value-
type). It indicates whether a callable definition is an intializer;
i.e., it is either a constructor or a (private or package)
method that is only called from another initializer.

E. TYPE GRAPH
These are the nodes defined for Type Graphs:
• ARRAY_TYPE: node representing an array type.
• TYPE_DEFINITION: class, enumeration or interface
definition.

• CALLABLE_TYPE: type of any method or constructor.
• INTERSECTION_TYPE: intersection of two or more
types (i.e., Java & type constructor).

• VOID_TYPE: node representing the void type.
• PACKAGE_TYPE: type attached to an package refer-
ence expression (i.e. java.lang).

• NULL_TYPE: node representing the type of null.
• PRIMITIVE_TYPE: representation of any Java primi-
tive type.

• TYPE_VARIABLE: type variables used with generic
types.

• UNION_TYPE: union of two or more types, used in
catch blocks (i.e., Java | type constructor).

• GENERIC_TYPE: a generic type that is parameterized
with other types.

• WILDCARD_TYPE: node representing a Java wildcard
type (i.e., ?).

The following relationships are defined for Type Graphs
(Table 8):
• IS_SUBTYPE_EXTENDS: relates a type definition to
its direct supertypes.

• IS_SUBTYPE_IMPLEMENTS: relates a class or enum
definition to its direct super-interfaces.

• ITS_TYPE_IS: relates expressions, and variable and
method/constructor definitions to their type.

• INHERITS_FIELD: relates type definitions to their
(directly or indirectly) inherited fields, if any.

• INHERITS_METHOD: relates type definitions to their
(directly or indirectly) inherited methods, provided that
they are not overridden.

• OVERRIDES: relates a method definition to the overrid-
den method definition, if any.

• ELEMENT_TYPE: relates an array type to the type of its
elements.

• RETURN_TYPE: relates a callable type to its return type.
• PARAM_TYPE: relates a callable type to its parameter
types, if any.

• THROWS_TYPE: connects a callable type to the excep-
tions in its throws clause, if any.

• INSTANCE_ARG_TYPE: relates a constructor type to
the type to be instantiated.

• UPPER_BOUND_TYPE: given < T1 extends T2 >,
this relationship connects T1 to T2.

• LOWER_BOUND_TYPE: given <? super T >, this
relationship connects the type that the compiler instan-
tiates for ? to T .

• WILDCARD_EXTENDS_BOUND: relates a wildcard to
the type included in its extends clause, if any
(e.g., ? extends Type).

• WILCARD_SUPER_BOUND: relates a wildcard to
the type included in its super clause, if any
(e.g., ? super Type).

The following properties are defined (Table 9):
• actualType: string representing the type of an
expression, callable or variable definition.

• typeKind: string representing a type generalization
(Table 9).

• typeBoundKind: string describing the kind of bound
of a wildcard type (Table 9).

F. PROGRAM DEPENDENCY GRAPH
The following new nodes are defined for PDGs:
• THIS_REF: represents the implicit object (this) in
each type definition.

• INITIALIZATION: represents the initialization
of variable (attribute, parameter or local variable)
definitions.

Relationships defined for PDGs (Table 10):
• USED_BY: relates a variable (field, parameter or local
variable) definition to the expressions where the variable
is read, if any.

• MODIFIED_BY: relates a variable definition to the
expressions in which its value is modified.

• STATE_MODIFIED_BY: relates a variable definition
or the implicit object (this) to the expressions or
callable definitions where its state is certainly mutated,
if any.

• STATE_MAY_BE_MODIFIED_BY: relates a variable
definition or the implicit object (this) to the invo-
cations or callable definitions where its state may be
modified.

• HAS_THIS_REFERENCE: relates any type definition
to the implicit object reference (this).

The property isOwnAccess is defined for the first four
PDG relationships (0..1 cardinality and Boolean value-type).
It indicates whether an expression accesses a field of the
implicit object (this).
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TABLE 8. Relationships defined for Type Graphs.

TABLE 9. Properties defined for Type Graphs.

TABLE 10. Relationships defined for PDGs.

TABLE 11. Relationships defined for Package Graphs.

G. CLASS DEPENDENCY GRAPH
For CDGs, we define two relationships:
• USES_TYPE_DEF: connects two type definitions
(declared in the project or not), representing that the
source node depends on the target one. Therefore,
its domain and range are TYPE_DEFINITION; its
cardinality is 0..*.

• HAS_INNER_TYPE_DEF: relates a compilation unit to
the inner types defined inside it. Its domain, range and
cardinality are, respectively, COMPILATION_UNIT,
TYPE_DEFINITION and 0..*.

H. PACKAGE GRAPH
Two nodes are added for Package Graphs:
• PACKAGE: represents any package declaration defined
or used in the program.

• PROGRAM: models the whole program, representing the
graph root.

What follows are the Package Graph relationships defined
(details in Table 11):
• PROGRAM_DECLARES_PACKAGE: relates a program
to the packages defined in it.

• PACKAGE_HAS_COMPILATION_UNIT: relates a
package to the compilation units it contains.

• DEPENDS_ON_PACKAGE: relates a package to the
packages it depends on, if any; target packages must be
defined in the source code.

• DEPENDS_ON_NON_DECLARED_PACKAGE: relates
a package to the packages it depends on, if any; target
packages are not defined in the source code.

Finally, the following two properties are included in
Package Graphs:
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• ID: node property defined for PROGRAM. It is a unique
identifier for each program. Its value-type is string and
has cardinality of one.

• timestamp: a property of the PROGRAM node indicat-
ing when the program was inserted in the database. Its
value-type is date and has cardinality of one.
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