11,551 research outputs found

    Near-infrared spectroscopy of nearby Seyfert galaxies - II. Molecular content and coronal emission

    Full text link
    We present sub-arcsec near-infrared 1.5 - 2.5 micron moderate resolution long-slit spectra of eight nearby Seyfert galaxies (z<0.01), both parallel to the ionization cone and perpendicular to it. These spectra complement similar data on six Seyferts, presented in Reunanen, Kotilainen & Prieto (2002). Large concentrations of molecular gas (H2) are present in the nucleus regardless of the Seyfert type. The spatial extent of the H2 emission is larger perpendicular to the cone than parallel to it in 6/8 (75 %) galaxies, in agreement with the unified models of Active Galactic Nuclei. Broad BrGamma was detected in nearly half of the optically classified Seyfert 2 galaxies, including two objects with no evidence for hidden polarized Broad Line Region. Nuclear [FeII] emission is generally blueshifted which together with high BrGamma/[FeII] ratios suggests shocks as the dominant excitation mechanism in Seyfert galaxies. Bright coronal emission lines [SiVI] and [SiVII] are common in Seyferts, as they are detected in ~60 % of the galaxies. In three galaxies the coronal lines are extended only in the direction parallel to the cone. This could be explained by shock excitation due to the jet or superwind interacting with the interstellar medium.Comment: 19 pages, accepted for publication in MNRA

    Low optical polarisation at the core of the optically-thin jet of M87

    Full text link
    We study the optical linear and circular polarisation in the optically-thin regime of the core and jet of M87. Observations were acquired two days before the Event Horizon Telescope (EHT) campaign in early April 2017. A high degree (∼20\sim 20 per cent) of linear polarisation (Plin_{\rm lin}) is detected in the bright jet knots resolved at ∼10 arcsec\sim 10\, \rm{arcsec} to 23 arcsec23\, \rm{arcsec} (0.80.8-1.8 kpc1.8\, \rm{kpc}) from the centre, whereas the nucleus and inner jet show Plin≲5_{\rm lin} \lesssim 5 per cent. The position angle of the linear polarisation shifts by ∼90\sim 90 degrees from each knot to the adjacent ones, with the core angle perpendicular to the first knot. The nucleus was in a low level of activity (Plin∼2_{\rm lin} \sim 2-33 per cent), and no emission was detected from HST-1. No circular polarisation was detected either in the nucleus or the jet above a 3σ3\sigma level of Pcirc≤1.5_{\rm circ} \leq 1.5 per cent, discarding the conversion of Plin_{\rm lin} into Pcirc_{\rm circ}. A disordered magnetic field configuration or a mix of unresolved knots polarised along axes with different orientations could explain the low Plin_{\rm lin}. The latter implies a smaller size of the core knots, in line with current interferometric observations. Polarimetry with EHT can probe this scenario in the future. A steep increase of both Plin_{\rm lin} and Pcirc_{\rm circ} with increasing frequency is expected for the optically-thin domain, above the turnover point. This work describes the methodology to recover the four Stokes parameters using a λ/4\lambda/4 wave-plate polarimeter.Comment: Accepted for publication in MNRAS. 10 pages, 8 figure

    The central parsecs of active galactic nuclei: challenges to the torus

    Full text link
    Type 2 AGN are by definition nuclei in which the broad-line region and continuum light are hidden at optical/UV wavelengths by dust. Via accurate registration of infrared (IR) Very Large Telescope adaptive optics images with optical \textit{Hubble Space Telescope} images we unambiguously identify the precise location of the nucleus of a sample of nearby, type 2 AGN. Dust extinction maps of the central few kpc of these galaxies are constructed from optical-IR colour images, which allow tracing the dust morphology at scales of few pc. In almost all cases, the IR nucleus is shifted by several tens of pc from the optical peak and its location is behind a dust filament, prompting to this being a major, if not the only, cause of the nucleus obscuration. These nuclear dust lanes have extinctions AV≥3−6A_V \geq 3-6 mag, sufficient to at least hide the low-luminosity AGN class, and in some cases are observed to connect with kpc-scale dust structures, suggesting that these are the nuclear fueling channels. A precise location of the ionised gas Hα\alpha and [\textsc{Si\,vii}] 2.48 μ\mum coronal emission lines relative to those of the IR nucleus and dust is determined. The Hα\alpha peak emission is often shifted from the nucleus location and its sometimes conical morphology appears not to be caused by a nuclear --torus-- collimation but to be strictly defined by the morphology of the nuclear dust lanes. Conversely, [\textsc{Si\,vii}] 2.48 μ\mum emission, less subjected to dust extinction, reflects the truly, rather isotropic, distribution of the ionised gas. All together, the precise location of the dust, ionised gas and nucleus is found compelling enough to cast doubts on the universality of the pc-scale torus and supports its vanishing in low-luminosity AGN. Finally, we provide the most accurate position of the NGC 1068 nucleus, located at the South vertex of cloud B.Comment: 23 pages, 10 figures, accepted for publication in MNRA

    Optical Surface Photometry of a Sample of Disk Galaxies. II Structural Components

    Full text link
    This work presents the structural decomposition of a sample of 11 disk galaxies, which span a range of different morphological types. The U, B, V, R, and I photometric information given in Paper I (color and color-index images and luminosity, ellipticity, and position-angle profiles) has been used to decide what types of components form the galaxies before carrying out the decomposition. We find and model such components as bulges, disks, bars, lenses and rings.Comment: 14 figures. Accepted for publication in A&
    • …
    corecore