274 research outputs found

    Workforce needs of the career development sector in the UK

    Get PDF
    The research utilised an online survey circulated widely through the networks of both organisations. Responses were received from 59 employing organisations, representing the four countries in the UK. 64% of responses came from larger career providers employing more than 40 staff. The respondents represented employers providing services to young people, adults, all-age, FE and a small number of HE providers. The research presents a snap shot in time which suggests that pay and conditions, geography and access to affordable training are impacting on the skills and capability of the sector. Recruitment issues, ageing workforce and technology are perceived as the greatest challenges to the career development field at the present.Career Development Institut

    A binary self-organizing map and its FPGA implementation

    Get PDF
    A binary Self Organizing Map (SOM) has been designed and implemented on a Field Programmable Gate Array (FPGA) chip. A novel learning algorithm which takes binary inputs and maintains tri-state weights is presented. The binary SOM has the capability of recognizing binary input sequences after training. A novel tri-state rule is used in updating the network weights during the training phase. The rule implementation is highly suited to the FPGA architecture, and allows extremely rapid training. This architecture may be used in real-time for fast pattern clustering and classification of the binary features

    A modified neural network model for Lobula Giant Movement Detector with additional depth movement feature

    Get PDF
    The Lobula Giant Movement Detector (LGMD) is a wide-field visual neuron that is located in the Lobula layer of the Locust nervous system. The LGMD increases its firing rate in response to both the velocity of the approaching object and its proximity. It has been found that it can respond to looming stimuli very quickly and can trigger avoidance reactions whenever a rapidly approaching object is detected. It has been successfully applied in visual collision avoidance systems for vehicles and robots. This paper proposes a modified LGMD model that provides additional movement depth direction information. The proposed model retains the simplicity of the previous neural network model, adding only a few new cells. It has been tested on both simulated and recorded video data sets. The experimental results shows that the modified model can very efficiently provide stable information on the depth direction of movement

    Design of an N^7-Glycosylated Purine Nucleoside for Recognition of GC Base Pairs by Triple Helix Formation

    Get PDF
    Pyrimidine oligodeoxyribonucleotides bind in the major groove of DNA parallel to the purine Watson-Crick strand by formation of specific hydrogen bonds between thymine and adenine (T•AT triplet) and protonated cytosine and guanine (C+GC triplet) on the Hoogsteen face of the purine base. Alternatively, purine oligodeoxyribonucleotides bind in an antiparallel orientation relative to the purine Watson-Crick strand by formation of G•GC and A•AT triplets. The prerequisite protonation of cytosine in C+GC triplets leads to a considerable pH dependence in the binding affinity of C-containing oligodeoxyribonucleotides (Figure 1). Substitution of 5-methylcytosine (^mC) for cytosine results in increased binding affinities near physiological pH. In an attempt to eliminate the necessity for protonation, recent efforts have been directed toward the synthesis of nonnatural nucleosides which display the hydrogen bonding functionality of protonated cytosine

    Genetic immune escape landscape in primary and metastatic cancer

    Get PDF
    Genome; Tumour immunologyGenoma; InmunologĂ­a tumoralGenoma; Immunologia tumoralStudies have characterized the immune escape landscape across primary tumors. However, whether late-stage metastatic tumors present differences in genetic immune escape (GIE) prevalence and dynamics remains unclear. We performed a pan-cancer characterization of GIE prevalence across six immune escape pathways in 6,319 uniformly processed tumor samples. To address the complexity of the HLA-I locus in the germline and in tumors, we developed LILAC, an open-source integrative framework. One in four tumors harbors GIE alterations, with high mechanistic and frequency variability across cancer types. GIE prevalence is generally consistent between primary and metastatic tumors. We reveal that GIE alterations are selected for in tumor evolution and focal loss of heterozygosity of HLA-I tends to eliminate the HLA allele, presenting the largest neoepitope repertoire. Finally, high mutational burden tumors showed a tendency toward focal loss of heterozygosity of HLA-I as the immune evasion mechanism, whereas, in hypermutated tumors, other immune evasion strategies prevail

    Anisotropic intrinsic lattice thermal conductivity of phosphorene from first principles

    Full text link
    Phosphorene, the single layer counterpart of black phosphorus, is a novel two-dimensional semiconductor with high carrier mobility and a large fundamental direct band gap, which has attracted tremendous interest recently. Its potential applications in nano-electronics and thermoelectrics call for a fundamental study of the phonon transport. Here, we calculate the intrinsic lattice thermal conductivity of phosphorene by solving the phonon Boltzmann transport equation (BTE) based on first-principles calculations. The thermal conductivity of phosphorene at 300 K300\,\mathrm{K} is 30.15 Wm−1K−130.15\,\mathrm{Wm^{-1}K^{-1}} (zigzag) and 13.65 Wm−1K−113.65\,\mathrm{Wm^{-1}K^{-1}} (armchair), showing an obvious anisotropy along different directions. The calculated thermal conductivity fits perfectly to the inverse relation with temperature when the temperature is higher than Debye temperature (ΘD=278.66 K\Theta_D = 278.66\,\mathrm{K}). In comparison to graphene, the minor contribution around 5%5\% of the ZA mode is responsible for the low thermal conductivity of phosphorene. In addition, the representative mean free path (MFP), a critical size for phonon transport, is also obtained.Comment: 5 pages and 6 figures, Supplemental Material available as http://www.rsc.org/suppdata/cp/c4/c4cp04858j/c4cp04858j1.pd

    Pan-cancer whole-genome comparison of primary and metastatic solid tumours

    Get PDF
    Cancer genomics; DNA damage and repair; MetastasisGenòmica del càncer; Dany i reparació de l'ADN, MetàstasiGenómica del cåncer; Daùo y reparación del ADN; MetåstasisMetastatic cancer remains an almost inevitably lethal disease1,2,3. A better understanding of disease progression and response to therapies therefore remains of utmost importance. Here we characterize the genomic differences between early-stage untreated primary tumours and late-stage treated metastatic tumours using a harmonized pan-cancer analysis (or reanalysis) of two unpaired primary4 and metastatic5 cohorts of 7,108 whole-genome-sequenced tumours. Metastatic tumours in general have a lower intratumour heterogeneity and a conserved karyotype, displaying only a modest increase in mutations, although frequencies of structural variants are elevated overall. Furthermore, highly variable tumour-specific contributions of mutational footprints of endogenous (for example, SBS1 and APOBEC) and exogenous mutational processes (for example, platinum treatment) are present. The majority of cancer types had either moderate genomic differences (for example, lung adenocarcinoma) or highly consistent genomic portraits (for example, ovarian serous carcinoma) when comparing early-stage and late-stage disease. Breast, prostate, thyroid and kidney renal clear cell carcinomas and pancreatic neuroendocrine tumours are clear exceptions to the rule, displaying an extensive transformation of their genomic landscape in advanced stages. Exposure to treatment further scars the tumour genome and introduces an evolutionary bottleneck that selects for known therapy-resistant drivers in approximately half of treated patients. Our data showcase the potential of pan-cancer whole-genome analysis to identify distinctive features of late-stage tumours and provide a valuable resource to further investigate the biological basis of cancer and resistance to therapies

    Design of an N^7-Glycosylated Purine Nucleoside for Recognition of GC Base Pairs by Triple Helix Formation

    Get PDF
    Pyrimidine oligodeoxyribonucleotides bind in the major groove of DNA parallel to the purine Watson-Crick strand by formation of specific hydrogen bonds between thymine and adenine (T•AT triplet) and protonated cytosine and guanine (C+GC triplet) on the Hoogsteen face of the purine base. Alternatively, purine oligodeoxyribonucleotides bind in an antiparallel orientation relative to the purine Watson-Crick strand by formation of G•GC and A•AT triplets. The prerequisite protonation of cytosine in C+GC triplets leads to a considerable pH dependence in the binding affinity of C-containing oligodeoxyribonucleotides (Figure 1). Substitution of 5-methylcytosine (^mC) for cytosine results in increased binding affinities near physiological pH. In an attempt to eliminate the necessity for protonation, recent efforts have been directed toward the synthesis of nonnatural nucleosides which display the hydrogen bonding functionality of protonated cytosine
    • …
    corecore