60 research outputs found

    Counting the Impossible: Sampling and Modeling to Achieve a Large State Homeless Count

    Get PDF
    Objective: Using inferential statistics, we develop estimates of the homeless population of a geographically large and economically diverse state -- Georgia. Methods: Multiple independent data sources (2000 U.S. Census, the 2006 Georgia County Guide, Georgia Chamber of Commerce) were used to develop Clusters of the 150 Georgia Counties. These clusters were used as strata to then execute traified sampling. Homeless counts were conducted within the sample counties, allowing for multiple regression models to be developed to generate predictions of homeless persons by county. Results: In response to a mandate from the US Department of Housing and Urban Development, the State of Georgia provided an estimate of its unsheltered homeless population of 12,058 utilizing mathematically validated estimation techniques. Conclusions: Utilization of statistical estimation techniques allowed the State of Georgia to meet the mandate of HUD, while saving the taxpayers of Georgia millions of dollars over a complete state homeless census

    Working with the National Framework for Inclusion: a guide for teacher educators

    Get PDF
    This companion resource accompanies the National Framework for Inclusion 3rd edition and was developed by the Scottish Universities Inclusion Group (SUIG) and edited by Di Cantali (SUIG Chair). SUIG is a working group of the Scottish Council of Deans of Education

    Working with the National Framework for Inclusion: a guide for teacher educators

    Get PDF
    This companion resource accompanies the National Framework for Inclusion 3rd edition and was developed by the Scottish Universities Inclusion Group (SUIG) and edited by Di Cantali (SUIG Chair). SUIG is a working group of the Scottish Council of Deans of Education

    National framework for inclusion

    Get PDF
    Inclusive education is the cornerstone of Scottish education and, as such, must be of the highest priority for the Scottish Government and for all those involved in education in Scotland. There is clear recognition of the fact that teachers need to be well prepared and appropriately supported throughout their careers if they are to succeed in developing and sustaining the desired inclusive practice which will enable them to meet the increasingly diverse needs of all children within schools in Scotland

    Field pathogenomics reveals the emergence of a diverse wheat yellow rust population

    Get PDF
    BACKGROUND: Emerging and re-emerging pathogens imperil public health and global food security. Responding to these threats requires improved surveillance and diagnostic systems. Despite their potential, genomic tools have not been readily applied to emerging or re-emerging plant pathogens such as the wheat yellow (stripe) rust pathogen Puccinia striiformis f. sp. tritici (PST). This is due largely to the obligate parasitic nature of PST, as culturing PST isolates for DNA extraction remains slow and tedious. RESULTS: To counteract the limitations associated with culturing PST, we developed and applied a field pathogenomics approach by transcriptome sequencing infected wheat leaves collected from the field in 2013. This enabled us to rapidly gain insights into this emerging pathogen population. We found that the PST population across the United Kingdom (UK) underwent a major shift in recent years. Population genetic structure analyses revealed four distinct lineages that correlated to the phenotypic groups determined through traditional pathology-based virulence assays. Furthermore, the genetic diversity between members of a single population cluster for all 2013 PST field samples was much higher than that displayed by historical UK isolates, revealing a more diverse population of PST. CONCLUSIONS: Our field pathogenomics approach uncovered a dramatic shift in the PST population in the UK, likely due to a recent introduction of a diverse set of exotic PST lineages. The methodology described herein accelerates genetic analysis of pathogen populations and circumvents the difficulties associated with obligate plant pathogens. In principle, this strategy can be widely applied to a variety of plant pathogens

    The JCMT BISTRO Survey: Studying the Complex Magnetic Field of L43

    Get PDF
    We present observations of polarized dust emission at 850 μm from the L43 molecular cloud, which sits in the Ophiuchus cloud complex. The data were taken using SCUBA-2/POL-2 on the James Clerk Maxwell Telescope as a part of the BISTRO large program. L43 is a dense (NH 10 22 2 ~ –1023 cm−2) complex molecular cloud with a submillimeter-bright starless core and two protostellar sources. There appears to be an evolutionary gradient along the isolated filament that L43 is embedded within, with the most evolved source closest to the Sco OB2 association. One of the protostars drives a CO outflow that has created a cavity to the southeast. We see a magnetic field that appears to be aligned with the cavity walls of the outflow, suggesting interaction with the outflow. We also find a magnetic field strength of up to ∼160 ± 30 μG in the main starless core and up to ∼90 ± 40 μG in the more diffuse, extended region. These field strengths give magnetically super- and subcritical values, respectively, and both are found to be roughly trans-Alfvénic. We also present a new method of data reduction for these denser but fainter objects like starless cores

    Filamentary Network and Magnetic Field Structures Revealed with BISTRO in the High-mass Star-forming Region NGC 2264: Global Properties and Local Magnetogravitational Configurations

    Get PDF
    We report 850 μm continuum polarization observations toward the filamentary high-mass star-forming region NGC 2264, taken as part of the B-fields In STar forming Regions Observations large program on the James Clerk Maxwell Telescope. These data reveal a well-structured nonuniform magnetic field in the NGC 2264C and 2264D regions with a prevailing orientation around 30° from north to east. Field strength estimates and a virial analysis of the major clumps indicate that NGC 2264C is globally dominated by gravity, while in 2264D, magnetic, gravitational, and kinetic energies are roughly balanced. We present an analysis scheme that utilizes the locally resolved magnetic field structures, together with the locally measured gravitational vector field and the extracted filamentary network. From this, we infer statistical trends showing that this network consists of two main groups of filaments oriented approximately perpendicular to one another. Additionally, gravity shows one dominating converging direction that is roughly perpendicular to one of the filament orientations, which is suggestive of mass accretion along this direction. Beyond these statistical trends, we identify two types of filaments. The type I filament is perpendicular to the magnetic field with local gravity transitioning from parallel to perpendicular to the magnetic field from the outside to the filament ridge. The type II filament is parallel to the magnetic field and local gravity. We interpret these two types of filaments as originating from the competition between radial collapsing, driven by filament self-gravity, and longitudinal collapsing, driven by the region's global gravity

    Filamentary Network and Magnetic Field Structures Revealed with BISTRO in the High-Mass Star-Forming Region NGC2264 : Global Properties and Local Magnetogravitational Configurations

    Full text link
    We report 850 μ\mum continuum polarization observations toward the filamentary high-mass star-forming region NGC 2264, taken as part of the B-fields In STar forming Regions Observations (BISTRO) large program on the James Clerk Maxwell Telescope (JCMT). These data reveal a well-structured non-uniform magnetic field in the NGC 2264C and 2264D regions with a prevailing orientation around 30 deg from north to east. Field strengths estimates and a virial analysis for the major clumps indicate that NGC 2264C is globally dominated by gravity while in 2264D magnetic, gravitational, and kinetic energies are roughly balanced. We present an analysis scheme that utilizes the locally resolved magnetic field structures, together with the locally measured gravitational vector field and the extracted filamentary network. From this, we infer statistical trends showing that this network consists of two main groups of filaments oriented approximately perpendicular to one another. Additionally, gravity shows one dominating converging direction that is roughly perpendicular to one of the filament orientations, which is suggestive of mass accretion along this direction. Beyond these statistical trends, we identify two types of filaments. The type-I filament is perpendicular to the magnetic field with local gravity transitioning from parallel to perpendicular to the magnetic field from the outside to the filament ridge. The type-II filament is parallel to the magnetic field and local gravity. We interpret these two types of filaments as originating from the competition between radial collapsing, driven by filament self-gravity, and the longitudinal collapsing, driven by the region's global gravity.Comment: Accepted for publication in the Astrophysical Journal. 43 pages, 32 figures, and 4 tables (including Appendix
    • …
    corecore