4 research outputs found

    ROTONET Primer

    Get PDF
    This document provides a brief overview of use of the ROTONET rotorcraft system noise prediction capability within the Aircraft Noise Program (ANOPP). Reviews are given on rotorcraft noise, the state-of-the-art of system noise prediction, and methods for using the various ROTONET prediction modules

    Development of a full potential solver for rotor aerodynamics analysis

    No full text
    Ph.D.Lakshmi N. Sanka

    Low Speed Rot or/Fuselage Interactional Aerodynamics

    No full text
    This report presents work performed under a Cooperative Research Agreement between Virginia Tech and the NASA Langley Research Center. The work involved development of computational techniques for modeling helicopter rotor/airframe aerodynamic interaction. A brief overview of the problem is presented, the modeling techniques are described, and selected example calculations are briefly discussed

    A Comparison of Measured and Predicted XV-15 Tiltrotor Surface Acoustic Pressures

    No full text
    Predicted XV-15 exterior surface acoustic pressures are compared with previously published experimental data. Surface acoustic pressure transducers were concentrated near the tip-path-plane of the rotor in airplane mode. The comparison emphasized cruise conditions which are of interest for tiltrotor interior noise - level flight for speeds ranging from 72 m/s to 113 m/s. The predictions were produced by components of the NASA Langley Tiltrotor Aeroacoustic Code (TRAC) system of computer codes. Comparisons between measurements and predictions were made in both the time and frequency domains, as well as overall sound pressure levels. In general, the predictions replicated the measured data well. Discrepancies between measurements and predictions were noted. Some of the discrepancies were due to poor correlation of the measured data with the rotor tach signal. In other cases limitations of the predictive methodology have been indicated
    corecore