156 research outputs found

    Measurements of group velocity of light in the lake Baikal water

    Get PDF
    The results of direct measurements of group velocity of light in the lake Baikal water at the depth of 1100 m are presented. The lake Baikal water dispersion has been measured at three wavelengths: 370 nm, 470 nm and 525 nm. The results are in a rather good agreement with theoretical predictions.Comment: 4 pages, 5 figures, talk presented at RICH2002, to be published in NIMA; misprints corrected in formula at page

    Gravitational radiation from a particle in circular orbit around a black hole. V. Black-hole absorption and tail corrections

    Get PDF
    A particle of mass μ\mu moves on a circular orbit of a nonrotating black hole of mass MM. Under the restrictions μ/M1\mu/M \ll 1 and v1v \ll 1, where vv is the orbital velocity, we consider the gravitational waves emitted by such a binary system. We calculate E˙\dot{E}, the rate at which the gravitational waves remove energy from the system. The total energy loss is given by E˙=E˙+E˙H\dot{E} = \dot{E}^\infty + \dot{E}^H, where E˙\dot{E}^\infty denotes that part of the gravitational-wave energy which is carried off to infinity, while E˙H\dot{E}^H denotes the part which is absorbed by the black hole. We show that the black-hole absorption is a small effect: E˙H/E˙v8\dot{E}^H/\dot{E} \simeq v^8. We also compare the wave generation formalism which derives from perturbation theory to the post-Newtonian formalism of Blanchet and Damour. Among other things we consider the corrections to the asymptotic gravitational-wave field which are due to wave-propagation (tail) effects.Comment: ReVTeX, 17 page

    Coherent Radio Pulses From GEANT Generated Electromagnetic Showers In Ice

    Full text link
    Radio Cherenkov radiation is arguably the most efficient mechanism for detecting showers from ultra-high energy particles of 1 PeV and above. Showers occuring in Antarctic ice should be detectable at distances up to 1 km. We report on electromagnetic shower development in ice using a GEANT Monte Carlo simulation. We have studied energy deposition by shower particles and determined shower parameters for several different media, finding agreement with published results where available. We also report on radio pulse emission from the charged particles in the shower, focusing on coherent emission at the Cherenkov angle. Previous work has focused on frequencies in the 100 MHz to 1 GHz range. Surprisingly, we find that the coherence regime extends up to tens of Ghz. This may have substantial impact on future radio-based neutrino detection experiments as well as any test beam experiment which seeks to measure coherent Cherenkov radiation from an electromagnetic shower. Our study is particularly important for the RICE experiment at the South Pole.Comment: 44 pages, 29 figures. Minor changes made, reference added, accepted for publication in Phys. Rev.

    Ten Proofs of the Generalized Second Law

    Full text link
    Ten attempts to prove the Generalized Second Law of Thermodyanmics (GSL) are described and critiqued. Each proof provides valuable insights which should be useful for constructing future, more complete proofs. Rather than merely summarizing previous research, this review offers new perspectives, and strategies for overcoming limitations of the existing proofs. A long introductory section addresses some choices that must be made in any formulation the GSL: Should one use the Gibbs or the Boltzmann entropy? Should one use the global or the apparent horizon? Is it necessary to assume any entropy bounds? If the area has quantum fluctuations, should the GSL apply to the average area? The definition and implications of the classical, hydrodynamic, semiclassical and full quantum gravity regimes are also discussed. A lack of agreement regarding how to define the "quasi-stationary" regime is addressed by distinguishing it from the "quasi-steady" regime.Comment: 60 pages, 2 figures, 1 table. v2: corrected typos and added a footnote to match the published versio

    Star Formation and Dynamics in the Galactic Centre

    Full text link
    The centre of our Galaxy is one of the most studied and yet enigmatic places in the Universe. At a distance of about 8 kpc from our Sun, the Galactic centre (GC) is the ideal environment to study the extreme processes that take place in the vicinity of a supermassive black hole (SMBH). Despite the hostile environment, several tens of early-type stars populate the central parsec of our Galaxy. A fraction of them lie in a thin ring with mild eccentricity and inner radius ~0.04 pc, while the S-stars, i.e. the ~30 stars closest to the SMBH (<0.04 pc), have randomly oriented and highly eccentric orbits. The formation of such early-type stars has been a puzzle for a long time: molecular clouds should be tidally disrupted by the SMBH before they can fragment into stars. We review the main scenarios proposed to explain the formation and the dynamical evolution of the early-type stars in the GC. In particular, we discuss the most popular in situ scenarios (accretion disc fragmentation and molecular cloud disruption) and migration scenarios (star cluster inspiral and Hills mechanism). We focus on the most pressing challenges that must be faced to shed light on the process of star formation in the vicinity of a SMBH.Comment: 68 pages, 35 figures; invited review chapter, to be published in expanded form in Haardt, F., Gorini, V., Moschella, U. and Treves, A., 'Astrophysical Black Holes'. Lecture Notes in Physics. Springer 201

    Coherent π0 photoproduction on the deuteron up to 4 GeV

    Get PDF
    The differential cross section for 2H(γ,d)π0 has been measured at deuteron center-of-mass angles of 90° and 136°. This work reports the first data for this reaction above a photon energy of 1 GeV, and permits a test of the apparent constituent counting rule and reduced nuclear amplitude behavior as observed in elastic ed scattering. Measurements were performed up to a photon energy of 4.0 GeV, and are in good agreement with previous lower energy measurements. Overall, the data are inconsistent with both constituent-counting rule and reduced nuclear amplitude predictions

    Traffic exposures, air pollution and outcomes in pulmonary arterial hypertension: A United Kingdom cohort study analysis

    Get PDF
    While traffic and air pollution exposure is associated with increased mortality in numerous diseases, its association with disease severity and outcomes in pulmonary arterial hypertension (PAH) remains unknown.Exposure to particulate matter ≤2.5 μm3 (PM2.5), nitrogen dioxide (NO2) and indirect measures of traffic-related air pollution (distance to main road and length of roads within buffer zones surrounding residential addresses) were estimated for 301 patients with idiopathic/heritable PAH recruited in the UK PAH national Cohort study. Associations with transplant-free survival and pulmonary hemodynamic severity at baseline were assessed, adjusting for confounding variables defined a priori.Higher estimated exposure to PM2.5 was associated with higher risk of death or lung transplant (Unadjusted hazard ratio (HR) 2.68; 95% CI 1.11-6.47 per 3 μg·m-3, p=0.028). This association remained similar when adjusted for potential confounding variables (HR 4.38; 95% CI 1.44-13.36 per 3 μg·m-3, p=0.009). No associations were found between NO2 exposure or other traffic pollution indicators and transplant-free survival Conversely, indirect measures of exposure to traffic-related air pollution within the 500-1000 m buffer zones correlated with the ERS/ESC risk categories as well as pulmonary hemodynamics at baseline. This association was strongest for pulmonary vascular resistance.In idiopathic/heritable PAH, indirect measures of exposure to traffic-related air pollution were associated with disease severity at baseline, whereas higher PM2.5 exposure may independently predict shorter transplant-free survival

    Population genomics of post-glacial western Eurasia.

    Get PDF
    Western Eurasia witnessed several large-scale human migrations during the Holocene &lt;sup&gt;1-5&lt;/sup&gt; . Here, to investigate the cross-continental effects of these migrations, we shotgun-sequenced 317 genomes-mainly from the Mesolithic and Neolithic periods-from across northern and western Eurasia. These were imputed alongside published data to obtain diploid genotypes from more than 1,600 ancient humans. Our analyses revealed a 'great divide' genomic boundary extending from the Black Sea to the Baltic. Mesolithic hunter-gatherers were highly genetically differentiated east and west of this zone, and the effect of the neolithization was equally disparate. Large-scale ancestry shifts occurred in the west as farming was introduced, including near-total replacement of hunter-gatherers in many areas, whereas no substantial ancestry shifts happened east of the zone during the same period. Similarly, relatedness decreased in the west from the Neolithic transition onwards, whereas, east of the Urals, relatedness remained high until around 4,000 BP, consistent with the persistence of localized groups of hunter-gatherers. The boundary dissolved when Yamnaya-related ancestry spread across western Eurasia around 5,000 BP, resulting in a second major turnover that reached most parts of Europe within a 1,000-year span. The genetic origin and fate of the Yamnaya have remained elusive, but we show that hunter-gatherers from the Middle Don region contributed ancestry to them. Yamnaya groups later admixed with individuals associated with the Globular Amphora culture before expanding into Europe. Similar turnovers occurred in western Siberia, where we report new genomic data from a 'Neolithic steppe' cline spanning the Siberian forest steppe to Lake Baikal. These prehistoric migrations had profound and lasting effects on the genetic diversity of Eurasian populations
    corecore