2,008 research outputs found
Rapid Online Analysis of Photopolymerization Kinetics and Molecular Weight Using Diffusion NMR
Online, high-throughput molecular weight analysis of polymerizations is rare, with most studies relying on tedious sampling techniques and batchwise postanalysis. The ability to track both monomer conversion and molecular weight evolution in real time could underpin precision polymer development and facilitate study of rapid polymerization reactions. Here, we use a single time-resolved diffusion nuclear magnetic resonance (NMR) experiment to simultaneously study the kinetics and molecular weight evolution during a photopolymerization, with in situ irradiation inside the NMR instrument. As a model system, we used a photoinduced electron transfer reversible addition-fragmentation chain transfer (PET-RAFT) polymerization. The data allow diffusion coefficients and intensities to be calculated every 14 s from which the polymer size and monomer conversion can be extracted. Key to this approach is (1) the use of shuffled gradient amplitudes in the diffusion NMR experiment to access reactions of any rate, (2) the addition of a relaxation agent to increase achievable time resolution and, (3) a sliding correction that accounts for viscosity changes during polymerization. Diffusion NMR offers a uniquely simple, translatable handle for online monitoring of polymerization reactions
Comment on “Using NMR to Test Molecular Mobility during a Chemical Reaction” ()
A study reported inThe Journal of Physical Chemistry Letters(Wang et al.,2021,12, 2370) of “boosted mobility” measured by diffusion NMR experiments contains significant errors in data analysis and interpretation. We carefully reanalyzed the same data and find no evidence of boosted mobility, and we identify several sources of error
Comment on "Boosted molecular mobility during common chemical reactions"
The apparent "boosted mobility"observed by Wang et al. (Reports, 31 July 2020, p. 537) is the result of a known artifact. When signal intensities are changing during a nuclear magnetic resonance (NMR) diffusion measurement for reasons other than diffusion, the use of monotonically increasing gradient amplitudes produces erroneous diffusion coefficients. We show that no boosted molecular mobility is observed when shuffled gradient amplitudes are applied
Following Molecular Mobility during Chemical Reactions: No Evidence for Active Propulsion
The reported changes in self-diffusion of small molecules during reactions have been attributed to "boosted mobility". We demonstrate the critical role of changing concentrations of paramagnetic ions on nuclear magnetic resonance (NMR) signal intensities, which led to erroneous measurements of diffusion coefficients. We present simple methods to overcome this problem. The use of shuffled gradient amplitudes allows accurate diffusion NMR measurements, even with time-dependent relaxation rates caused by changing concentrations of paramagnetic ions. The addition of a paramagnetic relaxation agent allows accurate determination of both diffusion coefficients and reaction kinetics during a single experiment. We analyze a copper-catalyzed azide-alkyne cycloaddition "click"reaction, for which boosted mobility has been claimed. With our methods, we accurately measure the diffusive behavior of the solvent, starting materials, and product and find no global increase in diffusion coefficients during the reaction. We overcome NMR signal overlap using an alternative reducing agent to improve the accuracy of the diffusion measurements. The alkyne reactant diffuses slower as the reaction proceeds due to binding to the copper catalyst during the catalytic cycle. The formation of this intermediate was confirmed by complementary NMR techniques and density functional theory calculations. Our work calls into question recent claims that molecules actively propel or swim during reactions and establishes that time-resolved diffusion NMR measurements can provide valuable insight into reaction mechanisms
Response to Comment on "following Molecular Mobility during Chemical Reactions: No Evidence for Active Propulsion" and "molecular Diffusivity of Click Reaction Components: The Diffusion Enhancement Question"
In their Comment (DOI: 10.1021/jacs.2c02965) on two related publications by our groups (J. Am. Chem. Soc. 2021, 143, 20884-20890; DOI: 10.1021/jacs.1c09455) and another (J. Am. Chem. Soc. 2022, 144, 1380-1388; DOI: 10.1021/jacs.1c11754), Huang and Granick discuss the diffusion NMR measurements of molecules during a copper-catalyzed azide-alkyne cycloaddition (CuAAC) "click"reaction. Here we respond to these comments and maintain that no diffusion enhancement was observed for any species during the reaction. We show that the relaxation agent does not interfere with the CuAAC reaction kinetics nor the diffusion of the molecules involved. Similarly, the gradient pulse length and diffusion time do not affect the diffusion coefficients. Peak overlap was completely removed in our study with the use of hydrazine as the reducing agent. The steady-state assumption does not hold for these diffusion measurements that take several minutes, which is the reason monotonic gradient orders are not suitable. Finally, we discuss the other reactions where similar changes in diffusion have been claimed. Our conclusions are fully supported by the results represented in our original JACS Article and the corresponding Supporting Information
Pheromone Binding to General Odorant-binding Proteins from the Navel Orangeworm
General odorant-binding proteins (GOBPs) of moths are postulated to be involved in the reception of semiochemicals other than sex pheromones, the so-called “general odorants.” We have expressed two GOBPs, AtraGOBP1 and AtraGOBP2, which were previously isolated from the antennae of the navel orangeworm, Amyelois transitella. Surprisingly, these two proteins did not bind compounds that are known to attract adult moths, particularly females. The proper folding and functionality of the recombinant proteins was inferred from circular dichroism analysis and demonstration that both GOBPs bound nonanal in a pH-dependent manner. EAG experiments demonstrated that female attractants (1-phenylethanol, propionic acid phenyl ester, and isobutyric acid phenyl ester) are detected with high sensitivity by the antennae of day-0 to day-4 adult females, with response declining in older moths. The same age-dependence was shown for male antennae responding to constituents of the sex pheromone. Interestingly, AtraGOBP2 bound the major constituent of the sex pheromone, Z11Z13-16Ald, with affinity comparable to that shown by a pheromone-binding protein, AtraPBP1. The related alcohol bound to AtraPBP1 with higher affinity than to AtraGOBP2. AtraGOBP1 bound both ligands with low but nearly the same affinity
Properties of small molecular drug loading and diffusion in a fluorinated PEG hydrogel studied by ^1H molecular diffusion NMR and ^(19)F spin diffusion NMR
R_f-PEG (fluoroalkyl double-ended poly(ethylene glycol)) hydrogel is potentially useful as a drug delivery depot due to its advanced properties of sol–gel two-phase coexistence and low surface erosion. In this study, ^1H molecular diffusion nuclear magnetic resonance (NMR) and ^(19)F spin diffusion NMR were used to probe the drug loading and diffusion properties of the R_f-PEG hydrogel for small anticancer drugs, 5-fluorouracil (FU) and its hydrophobic analog, 1,3-dimethyl-5-fluorouracil (DMFU). It was found that FU has a larger apparent diffusion coefficient than that of DMFU, and the diffusion of the latter was more hindered. The result of ^(19)F spin diffusion NMR for the corresponding freeze-dried samples indicates that a larger portion of DMFU resided in the R_f core/IPDU intermediate-layer region (where IPDU refers to isophorone diurethane, as a linker to interconnect the R_f group and the PEG chain) than that of FU while the opposite is true in the PEG–water phase. To understand the experimental data, a diffusion model was proposed to include: (1) hindered diffusion of the drug molecules in the R_f core/IPDU-intermediate-layer region; (2) relatively free diffusion of the drug molecules in the PEG-water phase (or region); and (3) diffusive exchange of the probe molecules between the above two regions. This study also shows that molecular diffusion NMR combined with spin diffusion NMR is useful in studying the drug loading and diffusion properties in hydrogels for the purpose of drug delivery applications
Multiple lung abscesses due to acinetobacter infection: a case report
Acinetobacter species are well-known causes of nosocomial infections. Recent increasing evidence emphasize on the role of these pathogens in community-acquired infections
Dispersal: an alternative mating tactic conditional on sex ratio and body size
Small male milkweed beetles are less successful at obtaining mates than are larger males. Larger males usually win fights and prevent smaller males from obtaining mates and from choosing larger more fecund females as mates. When sex ratios are male-biased, smaller males are particularly likely to experience these mating disadvantages. It follows that smaller males should be especially responsive to their local competitive environment and behave so as to minimize the mating disadvantages of their smaller size. This paper tests the hypothesis that smaller males disperse from host plant patches with male-biased sex ratios and remain in patches with female-biased sex ratios more readily than larger males.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46883/1/265_2004_Article_BF00299931.pd
Potentiation of thrombus instability: a contributory mechanism to the effectiveness of antithrombotic medications
© The Author(s) 2018The stability of an arterial thrombus, determined by its structure and ability to resist endogenous fibrinolysis, is a major determinant of the extent of infarction that results from coronary or cerebrovascular thrombosis. There is ample evidence from both laboratory and clinical studies to suggest that in addition to inhibiting platelet aggregation, antithrombotic medications have shear-dependent effects, potentiating thrombus fragility and/or enhancing endogenous fibrinolysis. Such shear-dependent effects, potentiating the fragility of the growing thrombus and/or enhancing endogenous thrombolytic activity, likely contribute to the clinical effectiveness of such medications. It is not clear how much these effects relate to the measured inhibition of platelet aggregation in response to specific agonists. These effects are observable only with techniques that subject the growing thrombus to arterial flow and shear conditions. The effects of antithrombotic medications on thrombus stability and ways of assessing this are reviewed herein, and it is proposed that thrombus stability could become a new target for pharmacological intervention.Peer reviewedFinal Published versio
- …