575 research outputs found

    Network-level analysis of metabolic regulation in the human red blood cell using random sampling and singular value decomposition

    Get PDF
    BACKGROUND: Extreme pathways (ExPas) have been shown to be valuable for studying the functions and capabilities of metabolic networks through characterization of the null space of the stoichiometric matrix (S). Singular value decomposition (SVD) of the ExPa matrix P has previously been used to characterize the metabolic regulatory problem in the human red blood cell (hRBC) from a network perspective. The calculation of ExPas is NP-hard, and for genome-scale networks the computation of ExPas has proven to be infeasible. Therefore an alternative approach is needed to reveal regulatory properties of steady state solution spaces of genome-scale stoichiometric matrices. RESULTS: We show that the SVD of a matrix (W) formed of random samples from the steady-state solution space of the hRBC metabolic network gives similar insights into the regulatory properties of the network as was obtained with SVD of P. This new approach has two main advantages. First, it works with a direct representation of the shape of the metabolic solution space without the confounding factor of a non-uniform distribution of the extreme pathways and second, the SVD procedure can be applied to a very large number of samples, such as will be produced from genome-scale networks. CONCLUSION: These results show that we are now in a position to study the network aspects of the regulatory problem in genome-scale metabolic networks through the use of random sampling. Contact: [email protected]

    Use of the Ober2 system for analysis of eye movements made during reading

    Get PDF
    Introduction: The Ober2 system uses infrared reflections to record and analyze eye movements made during reading. The system\u27s ability to analyze data from normal subjects, and the reliability of the data produced by subjects who read standard paragraphs were investigated in this study. Subjects: Forty-two college students and 20 junior high students participated in the project. All were self-reported normal readers. Methods: Subjects read 5 different paragraphs during each of two sessions. Ober2 analysis was attempted for each paragraph; analysis of all 10 paragraphs was successful for 38 percent of the college subjects and 20 percent of the junior high subjects. Use of manual calibration procedures did not allow any additional data to be analyzed by the Ober2 system. Results: Data from 30% of the paragraph presentations could not be analyzed by the Ober2. When analysis was successful, grade equivalent scores based on fixations, span of recognition, regressions, fixation duration, and reading rate were provided. Using mean grade equivalents from the 16 college subjects for whom all 10 paragraphs could be analyzed, significant differences were found between results for two of the test paragraphs. Split-half reliability coefficients for grade equivalent data from the two sessions ranged from 0.84 to 0.95. Conclusions: Although the Ober2 can provide valuable information on eye movements made during reading, problems exist with respect to its ability to analyze data. The analysis failures that occurred for approximately one-third of the paragraph presentations were frustrating and time consuming. With respect to the standard paragraphs, significant grade equivalent differences were found between several of them. These results suggest that caution be used when interpreting data from the Ober2 reading analysis system

    A Universal Theory of Pseudocodewords

    Get PDF
    Three types of pseudocodewords for LDPC codes are found in the literature: graph cover pseudocodewords, linear programming pseudocodewords, and computation tree pseudocodewords. In this paper we first review these three notions and known connections between them. We then propose a new decoding rule — universal cover decoding — for LDPC codes. This new decoding rule also has a notion of pseudocodeword attached, and this fourth notion provides a framework in which we can better understand the other three

    Pharmacological Evidence Suggests That the Lysozyme/PACAP Receptor of \u3cem\u3eTetrahymena thermophila\u3c/em\u3e is a Polycation Receptor

    Get PDF
    Pituitary adenylate cyclase activating polypeptide (PACAP) is a peptide hormone that exists in two biologically active forms: PACAP-38 and PACAP-27. Several types of PACAP receptors have been characterized, and these have been classified into three families: the VPAC1, the VPAC2, and the PAC1 receptors. In this study, we used in vivo behavioral assays along with pharmacological inhibitors to investigate the behavior of the lysozyme/PACAP receptor in Tetrahymena. This receptor behaves like a PAC1 receptor in some respects; however, PACAP 6-38 serves as an agonist, rather than an antagonist, for this receptor. These results are consistent with the existence of a generalized polycation receptor rather than a PACAP-specific receptor

    Health and disease markers correlate with gut microbiome composition across thousands of people.

    Get PDF
    Variation in the human gut microbiome can reflect host lifestyle and behaviors and influence disease biomarker levels in the blood. Understanding the relationships between gut microbes and host phenotypes are critical for understanding wellness and disease. Here, we examine associations between the gut microbiota and ~150 host phenotypic features across ~3,400 individuals. We identify major axes of taxonomic variance in the gut and a putative diversity maximum along the Firmicutes-to-Bacteroidetes axis. Our analyses reveal both known and unknown associations between microbiome composition and host clinical markers and lifestyle factors, including host-microbe associations that are composition-specific. These results suggest potential opportunities for targeted interventions that alter the composition of the microbiome to improve host health. By uncovering the interrelationships between host diet and lifestyle factors, clinical blood markers, and the human gut microbiome at the population-scale, our results serve as a roadmap for future studies on host-microbe interactions and interventions

    p-SMAD2/3 and DICER promote pre-miR-21 processing during pressure overload-associated myocardial remodeling

    Get PDF
    AbstractTransforming growth factor-β (TGF-β) induces miR-21 expression which contributes to fibrotic events in the left ventricle (LV) under pressure overload. SMAD effectors of TGF-β signaling interact with DROSHA to promote primary miR-21 processing into precursor miR-21 (pre-miR-21). We hypothesize that p-SMAD-2 and -3 also interact with DICER1 to regulate the processing of pre-miR-21 to mature miR-21 in cardiac fibroblasts under experimental and clinical pressure overload. The subjects of the study were mice undergoing transverse aortic constriction (TAC) and patients with aortic stenosis (AS). In vitro, NIH-3T3 fibroblasts transfected with pre-miR-21 responded to TGF-β1 stimulation by overexpressing miR-21. Overexpression and silencing of SMAD2/3 resulted in higher and lower production of mature miR-21, respectively. DICER1 co-precipitated along with SMAD2/3 and both proteins were up-regulated in the LV from TAC-mice. Pre-miR-21 was isolated bound to the DICER1 maturation complex. Immunofluorescence analysis revealed co-localization of p-SMAD2/3 and DICER1 in NIH-3T3 and mouse cardiac fibroblasts. DICER1-p-SMAD2/3 protein–protein interaction was confirmed by in situ proximity ligation assay. Myocardial up-regulation of DICER1 constituted a response to pressure overload in TAC-mice. DICER mRNA levels correlated directly with those of TGF-β1, SMAD2 and SMAD3. In the LV from AS patients, DICER mRNA was up-regulated and its transcript levels correlated directly with TGF-β1, SMAD2, and SMAD3. Our results support that p-SMAD2/3 interacts with DICER1 to promote pre-miR-21 processing to mature miR-21. This new TGFβ-dependent regulatory mechanism is involved in miR-21 overexpression in cultured fibroblasts, and in the pressure overloaded LV of mice and human patients

    Towards a formalism for mapping the spacetimes of massive compact objects: Bumpy black holes and their orbits

    Full text link
    Observations have established that extremely compact, massive objects are common in the universe. It is generally accepted that these objects are black holes. As observations improve, it becomes possible to test this hypothesis in ever greater detail. In particular, it is or will be possible to measure the properties of orbits deep in the strong field of a black hole candidate (using x-ray timing or with gravitational-waves) and to test whether they have the characteristics of black hole orbits in general relativity. Such measurements can be used to map the spacetime of a massive compact object, testing whether the object's multipoles satisfy the strict constraints of the black hole hypothesis. Such a test requires that we compare against objects with the ``wrong'' multipole structure. In this paper, we present tools for constructing bumpy black holes: objects that are almost black holes, but that have some multipoles with the wrong value. The spacetimes which we present are good deep into the strong field of the object -- we do not use a large r expansion, except to make contact with weak field intuition. Also, our spacetimes reduce to the black hole spacetimes of general relativity when the ``bumpiness'' is set to zero. We propose bumpy black holes as the foundation for a null experiment: if black hole candidates are the black holes of general relativity, their bumpiness should be zero. By comparing orbits in a bumpy spacetime with those of an astrophysical source, observations should be able to test this hypothesis, stringently testing whether they are the black holes of general relativity. (Abridged)Comment: 16 pages + 2 appendices + 3 figures. Submitted to PR
    • …
    corecore