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A Universal Theory of Pseudocodewords

Nathan Axvig, Emily Price, Eric Psota, Deanna Turk, LanceP€rez, and Judy L. Walker

Abstract— Three types of pseudocodewords for LDPC codes ¢ € E is assigned an unordered pair of verti¢esv} called
are found in the literature: graph cover pseudocodewords, the endpointsof e. The graphG is finite if V is a finite set.
linear programming pseudocodewords, and computation tree The graphG is simpleif, for eache € E, the two endpoints

pseudocodewords. In this paper we first review these three - - .
notions and known connections between them. We then propose of £ are distinct and, for any two distinct verticesv of G,

a new decoding rule — universal cover decoding — for there is at most one edge efwith endpoints{u,v}.
LDPC codes. This new decoding rule also has a notion of  For the remainder of this paper, we assume our graphs

pseudocodeword attached, and this fourth notion provides a gre simple. In this case, we can uniquely identify any edge
framework in which we can better understand the other three.  _ \ it its endpoints, and we write = (u, v).
l. INTRODUCTION Definition 1.2: Let G = (V, E) be a simple graph. For

v € V, the neighborhoodof v is the set of vertices € V

The discovery of turbo codes [2] and the subsequey,cp, thatu,v) € E. Elements of the neighborhood ofare
rediscovery of low-density parity-check (LDPC) codes [4]¢g)led neighborsof v, and thedegreeof v is the number of

[8] represent a major milestone in the field of coding theo%eighbor&; has. We sayG is d-regular if every vertex in
These two classes of codes can achieve realistic bit errgr55 degred. A pathin G is a finite sequence of distinct
rates, betweerl0~° and 102, with signal-to-noise ratios yerticesy,, ..., v of G such thaty;_; andu; are neighbors
that are only slightly above the minimum possible for a givegy, | < ; < 1. A cyclein G is a pathv, ..., vy in G with
channel and code rate established by Shannon’s originl%l — 'U_k We sayG is connectedf, for any two verticesu, v
capacity theorems [11]. _ of G, there is a pathu = v, v1, ..., vx = v fromu to v in
Perhaps the most important commonality between turbe \ye sayG is bipartite if there is a partitionV = X U F
and LDPC codes is that they both utilize iterative messagegs v into nonempty disjoint sets such that eack E has
passing decoding algorithms. The focus of this paper is thge endpoint inX and the other inF. If G is bipartite, we
determination of the behavior of iterative message-pgssiay it s (c, d)-regular if the degree of every vertex i is
decoding and the relationships between the various degodip 5nd the degree of every vertex i is d. We sayG is a
algorithms, with a particular aim toward an understandingee if (7 is connected and has no cycles.
of the noncodeword decoder errors that occur in computer pefinition 1.3: A Tanner graphis a finite bipartite graph
simulations of LDPC codes with iterative message-passing _ (X UF,E). We call X the set ofvariable nodesof
decoders. . . _ T and F the set ofcheck nodesf T'. A configurationon a
In the remainder of this section, we give some necessafynner graphl’ is an assignment = (c,).cx Of 0's and
background and terminology from graph theory. In Secys g the variable nodes f such that, at each check node
tion 11, we discuss the intuitively appealing view of itavat f of T, the binary sum of the values at the neighborsfof

message-passing algorithms as acting locally on the Tanngry The collection of configurations on a Tanner graph
graph, a view which leads tgraph cover pseudocodewords g 3jled the(LDPC) code determined by.

Section Ill considers linear programming decoding, which | ot 7 — (X UF, E) be a Tanner graph. Sin@is finite
was introduced by Feldman [3], and its relationship to thge can identify a configuration off with a vector inF%,
ideas of Section Il. In Section IV, we give a simulation,here r, -— |X|. The code determined by is then the

result which provides a contradiction to the graph covetgiection of all such vectors, and it is easy to check that
intuition. This leads us to return to the foundational wofk Othis code is linear of length and dimension at least — r,

Wiberg [13] in Section V. Finally, in Section VI we propose, here :— |F).

a decoding algorithm which provides insight as to how the ¢ ;7 _ (h;;) is anr x n binary matrix, then we associate

newer work of Sections Il and Il fits in with Wiberg's theory. o tanner griapﬁ“ = T(H) = (X(H)UF(H), E(H)) to H
Definition 1.1: A graphG is a pair(V, E), whereV is a by setting

nonempty set of elements calledrticesand ' is a (possibly

empty) set of elements calleedges such that each edge X(H)=A{x1,...,zn},
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code determined b¥'.

SinceT = T(H(T)) for any Tanner grapfi’ and H =
H(T(H)) for any binary matrixH, we have, for any binary
linear codeC, a one-to-one correspondence between parity

check matrices and Tanner graphs €or
The proof of the next proposition is clear.
Proposition 1.4:Suppos€l’ is a Tanner graph which is

Tanner graph, then we associate a binasyn matrix H =
(hj;) to T, whereh;; = 1 if and only if (x;, f;) € E. Note
that the code with parity check matriX(T') is precisely the : i

Fig. 1. The graph of Example 2.2, along with its two conne@ezbvers.

not connected, sa¥i, ..., T, are the connected componentsT” is a Tanner graph, with variable nodes in the set
of T. LetC C F% be the code determined iyandC; C Fy° ~ .
the code determined W, fori = 1,...,k, wheren; +-- -+ X = U T (z)
ni = n. ThenC is the direct sum of the;, i.e., zE€EX
and check nodes in the set
C=C1d---aC ~

B 1Eee e Fe=J ().

= {(c1|...|ck) €Fy|c1 € C4,...,ci € Ci}. Pt
In light of Proposition 1.4, we will assume for the remainder
of the paper that the Tanner grafhis connected. Writing X = {1, ..., 2,}, we can write

The power of LDPC codes lies in the existence of iterative X={opx|l<i<n1<k<M

message-passing decoding algorithms which act on the asso-
ciated Tanner graph. Two such algorithms are the min-suwith m(z;x) = z;. We use this indexing to write a vector
and the sum-product algorithms, discussed by Wiberg in [13} € F5*/ as

Loosely speaking, an iterative message-passing algoighm

a method of decoding in which each variable node and each A= (@@, G e ),
check node of is initialized with some data set provided by Definition 2.3: For any vectoa = (ay,...,ay) € F3, the
the output of the channel. The variable and check nodes také-lift a'™ € F3M is the vector
turns passing data to their neighborsZinperforming some ,
b 9 g P g aTM:(all:---:alM,...,anl:---:anM)

calculation at each step. This process of ‘message passing’
is allowed to continue for some predetermined number afith a;, = a; for 1 <i<n, 1<k < M.
iterations, with the expectation being that if the number Let C C F2M be the code determined tjii It is easy
of iterations is sufficiently large, then the messages willo see that ifa € F3 satisfiesa = al™ for somea €
converge. F2, thena™ < C if and only if a € C. In particular,
C™ = {c!M | c € C}is a subcode of . However, in many
Il. GRAPH COVER PSEUDOCODEWORDS situations we have?'™ £ C, i.e., C' contains codewords

In any iterative message-passing algorithm, the comput)ﬁ’-hiCh are not constant on all preimages of variable nodes of

tion at each particular vertex uses only information from it - This leads us to the ne>;t definition. _

immediate neighbors. This local nature of the algorithm on Definition 2.4: Let C' C I3 be a binary linear code with
: Tanner graplf". LetT be anM-cover of T and letC' C F3M

the Tanner graph prompts us to consideversof graphs. ) ~ =2

Definition 2.1: An unramified coveror simply acover, of be the code determined 1. For any codeword

a finite graphG' is a graphG along with a surjective graph = (c11:--

homomorphismr : G — G, called acovering map such ) .

that for eachy € V and eachi € 7~ 1(v), the neighborhood theunscaled graph cover pseudocodewassociated t@ is

of @ is mapped bijectively to the neighborhood af For a  the vector B

positive integerM, an M-coverof G is coverm : G — G p(€) = (p1,---,Pn)

such that for each vertex of G, 7~'(v) contains exactly ¢ nonnegative integers, whege = #{k|ci = 1}. The

M vertices ofG. o normalized graph cover pseudocodewaskociated t@ is
Notice that, with this definition, a cover of a connectegne vector

graph need not be connected.

Example 2.2:If G is an r-cycle, then forA/ > 1 the
only connected cover of7 is the rM-cycle. Other graphs, of rational numbers betweet and 1. If p is an unscaled
however, admit several connected covers of each degree. paph cover pseudocodeword fBr then (7, €) is arealiza-
example, the graph on the left in Figure 1 has two connecteidn for p if T is a finite cover of’ and¢ is a configuration
2-covers, as shown on the right of that figure. on T (i.e., a codeword in the code determined By such

Let T = (X U F,E) be a Tanner graph for the codethat p(c) = p; a realization of a normalized graph cover
C CFy and letwr : T — T be anM-cover of T. Then pseudocodeword is defined similarly. A realizati¢h, c)

CICIMs - Cpl i i epn) € C,

w(E©) = 3-p(@)



of a graph cover pseudocodeword is calledc@nected by
realizationif 7' is connected. v; > 0forall i,

If the appropriate adjective is clear from context, the term < =xuD = {@1 ----- vn) €T 30 Ry 2 hyivgforali, g }
pseudocodewordvill often be used to refer to either an e
unscaled graph cover pseudocodeword or a normalized gragh the case oftycle codesthey show that a vectop =
cover pseudocodeword. We note that every codeword is botht: - - -»Pn) Of nonnegative integers is an unscaled graph
an unscaled graph cover pseudocodeword and a normaliZQyer pseudocodeword if and only ifP := wuf*---ub»

graph cover pseudocodeword, since the Tanner grajsha apPpears with nonzero coefficient in tleglge zeta function
1-cover of itself. of the normal graphof the Tanner graph, and they give

Example 2.5 (See also [6].)The Tanner graphT on @ generalization of this characterization to arbitrary KDP
top in Figure 2 determines the cod€ spanned by Codes.

a = (1,1,1,0,0,0,0) andl? = (070’970’1’1’1)' I1l. LINEAR PROGRAMMING PSEUDOCODEWORDS

The graphT on the bottom in Figure 2 is a 2-cover ) ) ] ) ) )
of T and determines the codé’ spanned bya'?, In this section, we discuss linear programming decoding
b2 and € := (1:0,1:0,1:0,1:1,1:0,1:0,1:0). The un- and the notion of linear programming pseudocodewords. We
scaled graph cover’pséud(;codewérd l:orrespondin@ to &lso review the connections found by Vontobel and Koetter
is p(@) = (1,1,1,2,1,1,1) and the normalized graph [12] be_tween linear programming decoding and graph cover
cover pseudocodeword corresponding dis w(¢) = decoding. _ _ _
(3,111,111 Much of the setup is the same as in the previous sec-
2992992971929 999/ .

The relevance of graph covers to iterative message-passfiff)- In particular, we assume a binary-input, memoryless
decoding is very intuitive: since every finite covérof 7 channel with channel law described biy|x (ylx) =
is locally isomorphic toT’, a local algorithm oril” cannot  1li=1 F:ix. (yilzi). For a given outputy = (y1,...,yn)
distinguish betwee” and any finite cover of?. Thus, it ©f the channel, théog-likelihood vectorA = (A1, ..., An)
seems reasonable that all codewords in all covers of tf&given by

Tanner graph are considered by an iterative decoder. This A\ = log (M) 7

intuition was formalized by Vontobel and Koetter [12] with Py, x,(wil1)

their definition ofgraph cover decoding and, forx € R”, the costof x is
Definition 2.6: [12] Assume the codeC' with Tanner n

graphT is used on a binary-input, memoryless channel with \.x — Z A

channel law described by the conditional probability dgnsi —

function Py x (y|x) = [I;-; Py, |x, (vilz:). Let M be the
collection of all triples(M, T, X) whereT is an M-cover of
T andXx is a codeword in the code determined By For a
given channel outpuy and for anyx with (M, T, %) € M
for someM andT, set

Definition 3.1: [3] Let H = (h;;) be a fixedr x n parity-
check matrix with corresponding Tanner gr&phFor each
j=1,...,r, let N(j) be the set of variable nodes which
are adjacent to check nogein T, i.e.,

N(j) = {i|hs = 1}.

We call a vectow = (w1, ...,w,) € R* goodif 0 < w; <1

for eachi, and
wherey ' is the vector obtained by repeating each entry

M times. Graph cover decodings the decoding algorithm Zwi + Z (I—wi) <|ING)-1

given by the following decision rule: For a received vegtor i€s PEN(H\S

find the triple (M, T,x) € M that maximizes the quantity ¢y, eachj and each subse§ C N(j) with |S| odd. The
a7 log P?|5<(YTM|§), and returnw(x). fundamental polytop® = P(H) of H is the set of all good

In other words, graph cover decoding simultaneously liftgectors andinear programming decodinig the decision rule
the received vector to all finite covers of the Tanner graphyhich returns a vectow = (w1, ...,w,) € P which has

compares these lifts to all the codewords in the correspandi minimal cost.
codes, and returqs the normalizeq graph cover pseudoc.odeBeC(.]luse the output of linear programming decoding may
word corresponding to the covering-code codeword whichays be taken to be a vertex of the fundamental polytope,
has the highest Ilkellho_od of having been sent. we define dinear programming pseudocodewotd be any

In [6], Koetter, Li, Vontobel and Walker study yertex of the fundamental polytope. Feldman [3] showed that
characterizations of graph cover pseudocodewords. Kyery codeword is a linear programming pseudocodeword
particular, they show that a vectop of nonnegative ang that a vector ofi's and 1's is a linear programming
integers is an unscaled graph cover pseudocodewqideydocodeword if and only if it is a codeword. However,
if and only if it reduces modulo 2 to a codewordys js the case with graph cover pseudocodewords, there are
and it lives in thefundamental conell C R" given often linear programming pseudocodewords which are not

codewords.

n

M
P‘?\i(yTMi) = H H Py, x, (yilzix),
=1 k=1
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Fig. 2. The graphs of Example 2.5.

In [12], Vontobel and Koetter showed that linear program-  Proof: Seta; = w(c;) for 1 < i < k. Then, looking
ming decoding and graph cover decoding are essentially thé the unscaled graph cover pseudocodewords, we have
same: for a given channel output, graph cover decoding and
linear programming decoding return the same vector of ra-
tional numbers between 0 and 1. Moreover, the fundamental )
cone mentioned in Section Il above is precisely the conigividing through by gives
hull of Feldman’s fundamental polytopP, and a vector
w = (w1, ...,wy) of rational numbers between 0 and 1 is in
P if and only if it an unscaled graph cover pseudocodeword.

Notice that disconnected covers are needed for this Iastnce% > ( for each: and
statement to be true, as the next example shows.

Example 3.2:Consider the Tanner gragh which is an M,y T My My+--+Me M
8-cycle with vertices alternating between being check nodes M M M M ’
and variable_nodes. The <_:ode d_eterminedlb'bs _the binary \ye have writternw as a convex combination af;,
[4,1,4] repetition code, with parity check matrix

Mw= Moy + -+ Mpog.

My My
w=—og1+ -+ —Foy.
M M "

ey Ok
But eacha; is in P by [12] and so eac%ai is too since

11 0 0 ]‘]@ < 1. Sincew is a vertex of the polytope, this forces
011 0 eachq; to lie on the line segment from the origin &g, i.e.,

H= 00 1 1| a; = v;w for some rational numberg < ~; < 1. So we
10 0 1 have

The fundamental polytope is Mw = (Myyy + -+ + Mpyg)w,
which meansMy + -+ + My = M = Myv; + - -+ + M.

_ _ Hencev; = 1 for eachi, i.e., a; = w for all 7. [ |
As discussed in Example 2.2, the only connected covers of

are 8M-cycles forM > 1. Hence the only unscaled graph
cover pseudocodewords which have connected realizations
are those of the forr(0, 0,0,0) and(M, M, M, M) for M > As discussed above, intuition tells us that iterative
1, and so the only normalized graph cover pseudocodewordmessage-passing decoders are approximations to graph cove
with connected realizations afe,0,0,0) and(1,1,1,1). In  decoding. As graph cover decoding requires a comparison
particular, no rational point oP which is not a vertex o  involving all codewords in the codes corresponding to all
has a connected graph cover realization. finite covers of the Tanner graph, it must be viewed as a the-

On the other hand, we know that linear programming desretical tool rather than as an implementable (or simulejab
coding (and hence graph cover decoding) will always outp@gorithm. However, one can implement linear programming
a vertex of the fundamental polytope and, we observe that @decoding and, since (as discussed above) linear progragnmin
Example 3.2, these vertices do have connected realizatiodgcoding and graph cover decoding are equivalent [12], this
This phenomenon happens in general, as shown by the ngi¢lds a way of testing the intuition. In particular, if the
proposition. intuition is correct, then graph cover decoding (i.e., éine

Proposition 3.3:Let T be a Tanner graph with corre- programming decoding) should always out-perform itegativ
sponding fundamental polytopE. Supposew is a vertex message-passing-decoding. However, simulations shaw tha
of P, and let(T,¢) be a realization ofv. Let Ty, ..., T},  this is not the case, as is shown in the next example.

P=PH)={(wwuww) eR*|0<w<1}.

IV. A SIMULATION RESULT

be the connected componentsfé,f SO0 thatﬁ- an M;-cover
of T'for 1 < i < k, with My +--- + My = M, and
¢ = (¢1]...|cx), wherec; is a configuration orif;. Then
(T;,¢;) is a connected realization @b for i = 1,..., k.
In other words, every graph cover realizationwofs either

Example 4.1:Figure 3 shows the simulation results for
a turbo-based LDPC code [7] with linear programming
decoding, sum-product decoding and min-sum decoding.
This figure clearly shows that the iterative message-pgssin
decoders are superior to linear programming decoding (i.e.

connected or the disjoint union of connected graph coveraph cover decoding) for this particular code, with respec

realizations ofv.

to both word error rate and bit error rate.
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Fig. 3. Performance of a turbo code based LDPC code withripeagramming (LP), sum-product (SP) and min-sum (MS) dexpd

V. COMPUTATION TREE PSEUDOCODEWORDS of R are the vertices of? which are copies of the check

The conflict observed above — that iterative messagé‘-Ode§ ofT. A con_ﬁguratlonon R IS an assignment ars
passing decoding does not appear to be an approximati%_ﬂd1S to the vanabl_e nodes R in such a way t_hat the
of graph cover decoding — is resolved by returning to th@nary sum of the neighbors of each check nodetiis 0.
fundamental work of Wiberg [13]. Recall that every iterativ _Viberg [13] proves that iterative message-passing algo-
message-passing decoding algorithm works by recursiverIS;th actually work _by finding the m|n|m_al cost conﬁgura-
computing a cost function at each variable node and thefon on the computation tree. To make_ this more precise, we
making a decision based on those cost functions. focus_o_n_the min-sum algorithm. In this case, we haV(_a:
Definition 5.1: [13] Let T be a Tanner graph, and assume De€finition 5.3 (Wiberg, [13]):Let R be a computation
an iterative message-passing algorithm has been ruii ont€€ for the Tanner grapii” and let X (R) be the variable
for a total ofm iterations, where a single iteration consistd0deS OfR. Let ¢ = (cu).ex(r) be a configuration on a
of message-passing from the variable nodes to the cheﬁﬂm?]mat'_on tree. For eaohg X(R) which is a copy of
nodes and then back to the variable nodes. @apthm the ;" variable node ofl", define thelocal cost functiom\,
computation tredor 7" with root nodew is the tree obtained by
by tracing the computation of the final cost function of Ao (@) = Aiay,
the algorithm at the variable nodeof T' recursively back where A = (A1,...,\.) is the log-likelihood vector and

through time. :
0,1}. The(global) costof c is
It should be noted that the structure of the computation treoé6 {0.1} (@ ) ¢

depends upon the particular choice of scheduling used in the G(c) == Z Ao (cz).
iterative message-passing algorithm. However, a comipuatat 2eX(R)
tree of depthm can always be drawn as a tree withn + 1 Theorem 5.4 (Wiberg, [13])For each variable node on

levels, labeled from 0 t@m, where thed™ level consists only the Tanner graph, the min-sum algorithm computes, after
of the root node, each even-numbered level contains oniterations, the lowest cost configuration on the computatio
variable nodes, and each odd-numbered level contains orige of depthm rooted at that variable node. The output of
check nodes. Moreover, the computation tree locally lookihe algorithm is the vectdy, ..., ¢,) € {0,1}" such that;

like the original Tanner graplf: if (z, f) is an edge inl’, is the value at the root node of the lowest cost configuration
then every copy of: in the computation tree is adjacent toon the depthn tree rooted at theé!" variable node ofr".
exactly one copy of and every copy of in the computation In analogy with the graph cover and linear programming

tree is adjacent to exactly one copy «af situations, we define aomputation tree pseudocodewdal
Definition 5.2: Let R be a computation tree for the Tannerbe any configuration on any computation tree. Note that if
graphT. Thevariable node®f R are the vertices oR which  (¢y,...,¢,) is a codeword, then, for any computation tree

are copies of the variable nodes Bf and thecheck nodes R, the assignment = (c;).ex(r), 9iven byc, = ¢; if =



is a copy of thei™ variable node ofl’, is a configuration property: For any finite connected cover: G — G of G,
on R. Therefore, every codeword is a computation treéhere is a covering map : G — G such thatr o7 = 7.
pseudocodeword. In most cases, there are computation tfEeens : G — G is called auniversal covemnf G.
pseudocodewords which are not codewords. We call suchlt can be shown (see [10] or [9]) that every finite connected
computation tree pseudocodewortmtrivial. graphG has a unique (up to graph isomorphism) universal
Example 5.5:[See also [5].] It can be shown that therecover. The universal cove® of G is always a tree, and it
are no nontrivial computation tree pseudocodewords for thig an infinite tree (i.e., it has infinitely many vertices) ifca
Tanner grapt” of Example 3.2. However, the addition of aonly if G is not a tree. Moreovet; can be constructed from
new, redundant check allows for nontrivial computatioretre G by following the computation tree construction for infinite
pseudocodewords. L&t be the Tanner graph of Figure 4. depth with any vertex oy as the root node. The importance
Then the code determined 1y is again the4, 1,4] repeti-  of the universal cover in terms of decoding is that everydinit
tion code, but Figure 5 shows a nontrivial computation treeonnected cover of a Tanner grafhis a surjective image

pseudocodeword farf};. of the universal cover of’, and every computation tree for
T T is a subgraph of the universal coverBf
f fi Definition 6.2: Let T = (X U F, E) be a Tanner graph
and7 : T — T the universal cover of'. Set
v 2 =@ ad  F=|JFUN.
/3 f2 zeX fer

3 We call X the set ofvariable nodesof T and F the set of

Fig. 4. The Tanner grapfiy of Example 5.5. check nodesf 7. A configurationon T is an assignment

¢ = (Cz);c5 of 0's and 1's to the variable nodes df in
such a way that the binary sum of the neighbors of each
check node inT" is 0. A universal cover pseudocodeword
for T is a configuration orf".

The next proposition shows how graph cover pseudocode-
words, computation tree pseudocodewords, and universal
cover pseudocodewords are related. Recall that linear pro-
gramming pseudocodewords and graph cover pseudocode-
words were shown to coincide by Vontobel and Koetter [12].

Proposition 6.3:Let T' be a Tanner graph. Then
1) Every computation tree pseudocodewordfoextends

T1 3 g4 T3 1 3 T2 T4 T3 1 T3 1 T2 T3

Fig. 5. A computation tree of depth 2 rootedaat for the Tanner graph to a universal cover pseudocodeword.

Ty of Example 5.5. Labels on the check nodes are omitted foityclak 2) Every graph cover pseudocodeword fomwhich has a
nontrivial computation tree pseudocodeword is shown onttée, where L. . .

the ringed variable nodes are assumed to be sef'tand the others to connected graph cover realization induces a universal
“0”. cover pseudocodeword far.

3) Every universal cover pseudocodeword induces a com-

In light _of Wiberg's theorem, we see thz_alt itis th\_e nontrivial putation tree pseudocodeword on every computation
computation tree pseudocodewords which are impediments  rae for 7.

to correct decoding with iterative message-passing algo-
rithms. This simple observation was certainly known to
Wiberg at the time of his thesis in 1996. However, perhaps
because of stark contrast between the complicated nature
of computation trees and the elegance of finite covers, the
pseudocodeword literature has focused almost exclusively
on graph cover pseudocodewords. In the next section, we
propose a new decoding rule, the study of which should shed
light on computation tree pseudocodewords, includingrthei
connection to graph cover pseudocodewords.

Proof: Let7:7 — T be the universal cover df.
1) Supposec = (c.)zex(r) IS @ computation tree pseu-
docodeword on some computation treeof 7', rooted
at the variable node. Thinking of 7" as a computation
tree of infinite depth rooted at c can be superimposed
onto the top portion of" and, since there are no cycles
in T', it can be extended (possibly in several ways) to
a configuration on all off".
2) Suppose is an unscaled graph cover pseudocodeword
with a connected graph cover realizatidh, ¢), where

VI. UNIVERSAL COVER DECODING Tisa connected finite cover &f and¢ is a configu-
The connection between computation trees and finite cov-  ration onTASmceT is connected, there is a covering
ers can be found in theniversal cover a notion from map7 : T' — T and p induces a configuration
topology which we now define in the context of graph theory. € = (¢z)zcx On T by settingc; = cz () for each
For more information, see [10] or [9]. z e X.

Definition 6.1: Let G be a finite connected graph and 3) Suppose is a universal cover pseudocodeword ahd
suppose the covér : G — G enjoys the following universal is a computation tree fdf, rooted at the variable node



v of T. ThenT can be drawn as an infinite computationby a connected graph cover pseudocodeword. Then for any
tree forT, rooted atv, and the truncation o€ to R v € X(T') and anyb € X (T) lying overv, the rootedy-cost
yields a computation tree pseudocodewordran of ¢; is independent of choice af and is equal to

- " lim GO (60™)
Note that the restriction to graph cover pseudocodewords Mmoo Y ‘

:;V'th connected reaI|zat|on§ in part (2) of Proposition 6':l)\/loreover, the value of this limit is independent of the cleoic
oes not pose a problem since the output of the graph covefr

decoding algorithm is always a graph cover pseudocodewo(r)d v

with a connected realization by Proposition 3.3.

In order to propose a definition for universal cover deco
ing, we need some notion of cost for a configuration on th
universal cover of a Tanner graph. As the universal cover
the infinite computation tree, the idea is that the cost of
configuration on the universal cover ought to be the limit o ; . .
the costs of the truncated versions of the configuration on We an now defineiniversal cover dgcodmg
finite computation trees. Since the cost of a configuration on D_ef|n|t|on 6.7: Assume the COdS,W'th Tanner graphT
a computation tree is defined as a sum over all variable nod%@v'ng variable nodegu, .. " n} is used on a pmary—
in the computation tree and the number of variable nodddPut _memorylgss chgnndllnlversal cover decod!n_g; the
grows exponentially with the depth of the tree, we must firsg€coding algorithm given by the following decision rule:
define a normalized computation tree cost function. For a given channel output and eath= 1,...,n, find a

Definition 6.4: Let T be a Tanner graph, lét be a (finite) configurationc; on T, of ’T"”'ma' rOOte.d.xi'COSt' Return
computation tree fof’, and letX (R) be the set of variable & = (W1 --»wn), Wherew; is the probability that a random
nodes of R. For any configuratiore = (¢, ),cx(r) on R, COPY i of z; in Ty, is assigned a value of one lay.

let G(c) be the cost ok, as defined in Definition 5.3. The Because the universal cover is infinite for any graph that
normalized cosbf c on R is is not a tree, universal cover decoding cannot be simulated;

rather, it should be seen as a theoretical tool that forntieiy
G(c) := #G(c). together graph cover decoding and iterative messagengassi
| X (R)] decoding. Indeed, graph cover decoding is a sub-decoder
of universal cover decoding in the sense that both seek to
minimize the same cost but universal cover decoding sees all
o (m) ) configurations on the universal cover whereas graph cover
positive integern, let &y (mIng the computation tree of depth 4o ding sees only those configurations induced by graph
m rooted atv, so thatR, ™ is formed afteriruncaﬂr(]g“v cover pseudocodewords. On the other hand, universal cover
after level2m. For any configuratiore, on 7, let ¢, decoding is the limit of the min-sum decoder, in the sense
m > 1, be the truncation o, to RY"™, and |et@f,m)(c7gm)) that both seek to minimize the same cost but universal cover
be the normalized cost af,™ on R{™. The rooted v-cost  decoding operates on the infinite computation tree whereas
of the configuratiorc,, on the infinite computation tre€, min-sum operates on a finite computation tree, i.e., unalers

Note that requiring the minimum degree ©f to be at
al_east three is not a serious restriction.dlf < 2, the code
gefined byT is either the entire vector space, the zero code
ar the repetition code. Furthermore df < 2, we either get

e entire vector space, a code consisting of all even weight
yectors inf% or a cycle code.

Definition 6.5: Let 7" be a Tanner graph and letbe a
variable node off". Let T,, be the universal cover dof’,
realized as an infinite computation tree rooted .aFor any

is defined as cover decoding allows for infinitely many iterations wherea
) —(m) . (m) min-sum must run for only finitely many iterations. See [1]
Gu(e) := h;nj;lop G, (e™). for details.
For any variable node of 7" and any variable nodé of
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